top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Data mining for the social sciences : an introduction / / Paul Attewell and David B. Monaghan
Data mining for the social sciences : an introduction / / Paul Attewell and David B. Monaghan
Autore Attewell Paul A. <1949->
Pubbl/distr/stampa Oakland, California : , : University of California Press, , 2015
Descrizione fisica 1 online resource (265 p.)
Disciplina 006.3/12
Soggetto topico Social sciences - Data processing
Social sciences - Statistical methods
Data mining
Soggetto non controllato analyzing data
bayesian networks
big data
bootstrapping
business analytics
chaid
classification and regression trees
classification trees
confusion matrix
data analysis
data mining
data processing
data scholarship
data science
hardware for data mining
heteroscedasticity
naive bayes
partition trees
permutation tests
scholarly data
social science
social scientists
software for data mining
statistical methods
statistical modeling
studying data
text mining
vif regression
weka
ISBN 0-520-28098-9
0-520-96059-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- CONTENTS -- ACKNOWLEDGMENTS -- 1. WHAT IS DATA MINING? -- 2. CONTRASTS WITH THE CONVENTIONAL STATISTICAL APPROACH -- 3. SOME GENERAL STRATEGIES USED IN DATA MINING -- 4. IMPORTANT STAGES IN A DATA MINING PROJECT -- 5. PREPARING TRAINING AND TEST DATASETS -- 6. VARIABLE SELECTION TOOLS -- 7. CREATING NEW VARIABLES -- 8. EXTRACTING VARIABLES -- 9. CLASSIFIERS -- 10. CLASSIFICATION TREES -- 11. NEURAL NETWORKS -- 12. CLUSTERING -- 13. LATENT CLASS ANALYSIS AND MIXTURE MODELS -- 14. ASSOCIATION RULES -- CONCLUSION. Where Next? -- BIBLIOGRAPHY -- NOTES -- INDEX
Record Nr. UNINA-9910788152303321
Attewell Paul A. <1949->  
Oakland, California : , : University of California Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data mining for the social sciences : an introduction / / Paul Attewell and David B. Monaghan
Data mining for the social sciences : an introduction / / Paul Attewell and David B. Monaghan
Autore Attewell Paul A. <1949->
Pubbl/distr/stampa Oakland, California : , : University of California Press, , 2015
Descrizione fisica 1 online resource (265 p.)
Disciplina 006.3/12
Soggetto topico Social sciences - Data processing
Social sciences - Statistical methods
Data mining
Soggetto non controllato analyzing data
bayesian networks
big data
bootstrapping
business analytics
chaid
classification and regression trees
classification trees
confusion matrix
data analysis
data mining
data processing
data scholarship
data science
hardware for data mining
heteroscedasticity
naive bayes
partition trees
permutation tests
scholarly data
social science
social scientists
software for data mining
statistical methods
statistical modeling
studying data
text mining
vif regression
weka
ISBN 0-520-28098-9
0-520-96059-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- CONTENTS -- ACKNOWLEDGMENTS -- 1. WHAT IS DATA MINING? -- 2. CONTRASTS WITH THE CONVENTIONAL STATISTICAL APPROACH -- 3. SOME GENERAL STRATEGIES USED IN DATA MINING -- 4. IMPORTANT STAGES IN A DATA MINING PROJECT -- 5. PREPARING TRAINING AND TEST DATASETS -- 6. VARIABLE SELECTION TOOLS -- 7. CREATING NEW VARIABLES -- 8. EXTRACTING VARIABLES -- 9. CLASSIFIERS -- 10. CLASSIFICATION TREES -- 11. NEURAL NETWORKS -- 12. CLUSTERING -- 13. LATENT CLASS ANALYSIS AND MIXTURE MODELS -- 14. ASSOCIATION RULES -- CONCLUSION. Where Next? -- BIBLIOGRAPHY -- NOTES -- INDEX
Record Nr. UNINA-9910814373503321
Attewell Paul A. <1949->  
Oakland, California : , : University of California Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematics and Digital Signal Processing
Mathematics and Digital Signal Processing
Autore Lyakhov Pavel
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (180 p.)
Soggetto topico Information technology industries
Soggetto non controllato 3D image processing
3D model
adaptive filter
algorithm
classification
CNN
confusion matrix
control efficacy
conversion device
deep neural networks
detection
digital filter
digital filtering
digital signal analysis
discrete wavelet transform
ELM
exercise classification
feedback regulation
filter bank
finite field algebra
Fourier transform
fraction
genetic algorithm
harmonic wavelets
impulsive noise
kNN-algorithm
machine learning
mathematical models of digital signal processing
maximum correntropy
medical imaging
memory device
microphone array
modular division
module
motion capture
orientation
positioning
posture classification
prosthetic design
quantization noise
reconstruction
redundant residue number system
residue
residue number system
ROC curve
short-time Fourier transform
skeleton detection
sparse channel estimation
spectrogram
speech enhancement
sub-band processing
virtual rehabilitation
wavelet transform
wood defect
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557359803321
Lyakhov Pavel  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui