top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Intelligence for Smart and Sustainable Energy Systems and Applications
Artificial Intelligence for Smart and Sustainable Energy Systems and Applications
Autore Lytras Miltiadis
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (258 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato ambient assisted living
artificial intelligence
artificial neural network
artificial neural networks
CNN
computational intelligence
conditional random fields
decision tree
deep learning
demand response
demand side management
distributed genetic algorithm
drill-in fluid
ELR
energy
energy disaggregation
energy efficient coverage
energy management
ERELM
Faster R-CNN
feature extraction
forecasting
genetic algorithm
home energy management
home energy management systems
insulator
internet of things
Jetson TX2
load
load disaggregation
LR
LSTM
machine learning
Marsh funnel
MCP39F511
mud rheology
multiple kernel learning
NILM
non-intrusive load monitoring
nonintrusive load monitoring
object detection
optimization algorithms
plastic viscosity
policy making
price
RELM
RPN
sandstone reservoirs
scheduling
self-adaptive differential evolution algorithm
sensor network
smart cities
smart city
smart grid
smart grids
smart metering
smart villages
static young's modulus
support vector machine
sustainable development
transient signature
wireless sensor networks
yield point
ISBN 3-03928-890-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404078103321
Lytras Miltiadis  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Learning to Understand Remote Sensing Images: Volume 1 / Qi Wang
Learning to Understand Remote Sensing Images: Volume 1 / Qi Wang
Autore Wang Qi
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (414 pages)
Soggetto topico Computer science
Soggetto non controllato metadata
image classification
sensitivity analysis
ROI detection
residual learning
image alignment
adaptive convolutional kernels
Hough transform
class imbalance
land surface temperature
inundation mapping
multiscale representation
object-based
convolutional neural networks
scene classification
morphological profiles
hyperedge weight estimation
hyperparameter sparse representation
semantic segmentation
vehicle classification
flood
Landsat imagery
target detection
multi-sensor
building damage detection
optimized kernel minimum noise fraction (OKMNF)
sea-land segmentation
nonlinear classification
land use
SAR imagery
anti-noise transfer network
sub-pixel change detection
Radon transform
segmentation
remote sensing image retrieval
TensorFlow
convolutional neural network
particle swarm optimization
optical sensors
machine learning
mixed pixel
optical remotely sensed images
object-based image analysis
very high resolution images
single stream optimization
ship detection
ice concentration
online learning
manifold ranking
dictionary learning
urban surface water extraction
saliency detection
spatial attraction model (SAM)
quality assessment
Fuzzy-GA decision making system
land cover change
multi-view canonical correlation analysis ensemble
land cover
semantic labeling
sparse representation
dimensionality expansion
speckle filters
hyperspectral imagery
fully convolutional network
infrared image
Siamese neural network
Random Forests (RF)
feature matching
color matching
geostationary satellite remote sensing image
change feature analysis
road detection
deep learning
aerial images
image segmentation
aerial image
multi-sensor image matching
HJ-1A/B CCD
endmember extraction
high resolution
multi-scale clustering
heterogeneous domain adaptation
hard classification
regional land cover
hypergraph learning
automatic cluster number determination
dilated convolution
MSER
semi-supervised learning
gate
Synthetic Aperture Radar (SAR)
downscaling
conditional random fields
urban heat island
hyperspectral image
remote sensing image correction
skip connection
ISPRS
spatial distribution
geo-referencing
Support Vector Machine (SVM)
very high resolution (VHR) satellite image
classification
ensemble learning
synthetic aperture radar
conservation
convolutional neural network (CNN)
THEOS
visible light and infrared integrated camera
vehicle localization
structured sparsity
texture analysis
DSFATN
CNN
image registration
UAV
unsupervised classification
SVMs
SAR image
fuzzy neural network
dimensionality reduction
GeoEye-1
feature extraction
sub-pixel
energy distribution optimizing
saliency analysis
deep convolutional neural networks
sparse and low-rank graph
hyperspectral remote sensing
tensor low-rank approximation
optimal transport
SELF
spatiotemporal context learning
Modest AdaBoost
topic modelling
multi-seasonal
Segment-Tree Filtering
locality information
GF-4 PMS
image fusion
wavelet transform
hashing
machine learning techniques
satellite images
climate change
road segmentation
remote sensing
tensor sparse decomposition
Convolutional Neural Network (CNN)
multi-task learning
deep salient feature
speckle
canonical correlation weighted voting
fully convolutional network (FCN)
despeckling
multispectral imagery
ratio images
linear spectral unmixing
hyperspectral image classification
multispectral images
high resolution image
multi-objective
convolution neural network
transfer learning
1-dimensional (1-D)
threshold stability
Landsat
kernel method
phase congruency
subpixel mapping (SPM)
tensor
MODIS
GSHHG database
compressive sensing
ISBN 9783038976851
3038976857
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367755603321
Wang Qi  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Learning to Understand Remote Sensing Images: Volume 2 / Qi Wang
Learning to Understand Remote Sensing Images: Volume 2 / Qi Wang
Autore Wang Qi
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (363 pages)
Soggetto non controllato metadata
image classification
sensitivity analysis
ROI detection
residual learning
image alignment
adaptive convolutional kernels
Hough transform
class imbalance
land surface temperature
inundation mapping
multiscale representation
object-based
convolutional neural networks
scene classification
morphological profiles
hyperedge weight estimation
hyperparameter sparse representation
semantic segmentation
vehicle classification
flood
Landsat imagery
target detection
multi-sensor
building damage detection
optimized kernel minimum noise fraction (OKMNF)
sea-land segmentation
nonlinear classification
land use
SAR imagery
anti-noise transfer network
sub-pixel change detection
Radon transform
segmentation
remote sensing image retrieval
TensorFlow
convolutional neural network
particle swarm optimization
optical sensors
machine learning
mixed pixel
optical remotely sensed images
object-based image analysis
very high resolution images
single stream optimization
ship detection
ice concentration
online learning
manifold ranking
dictionary learning
urban surface water extraction
saliency detection
spatial attraction model (SAM)
quality assessment
Fuzzy-GA decision making system
land cover change
multi-view canonical correlation analysis ensemble
land cover
semantic labeling
sparse representation
dimensionality expansion
speckle filters
hyperspectral imagery
fully convolutional network
infrared image
Siamese neural network
Random Forests (RF)
feature matching
color matching
geostationary satellite remote sensing image
change feature analysis
road detection
deep learning
aerial images
image segmentation
aerial image
multi-sensor image matching
HJ-1A/B CCD
endmember extraction
high resolution
multi-scale clustering
heterogeneous domain adaptation
hard classification
regional land cover
hypergraph learning
automatic cluster number determination
dilated convolution
MSER
semi-supervised learning
gate
Synthetic Aperture Radar (SAR)
downscaling
conditional random fields
urban heat island
hyperspectral image
remote sensing image correction
skip connection
ISPRS
spatial distribution
geo-referencing
Support Vector Machine (SVM)
very high resolution (VHR) satellite image
classification
ensemble learning
synthetic aperture radar
conservation
convolutional neural network (CNN)
THEOS
visible light and infrared integrated camera
vehicle localization
structured sparsity
texture analysis
DSFATN
CNN
image registration
UAV
unsupervised classification
SVMs
SAR image
fuzzy neural network
dimensionality reduction
GeoEye-1
feature extraction
sub-pixel
energy distribution optimizing
saliency analysis
deep convolutional neural networks
sparse and low-rank graph
hyperspectral remote sensing
tensor low-rank approximation
optimal transport
SELF
spatiotemporal context learning
Modest AdaBoost
topic modelling
multi-seasonal
Segment-Tree Filtering
locality information
GF-4 PMS
image fusion
wavelet transform
hashing
machine learning techniques
satellite images
climate change
road segmentation
remote sensing
tensor sparse decomposition
Convolutional Neural Network (CNN)
multi-task learning
deep salient feature
speckle
canonical correlation weighted voting
fully convolutional network (FCN)
despeckling
multispectral imagery
ratio images
linear spectral unmixing
hyperspectral image classification
multispectral images
high resolution image
multi-objective
convolution neural network
transfer learning
1-dimensional (1-D)
threshold stability
Landsat
kernel method
phase congruency
subpixel mapping (SPM)
tensor
MODIS
GSHHG database
compressive sensing
ISBN 9783038976998
3038976997
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367755503321
Wang Qi  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements
Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements
Autore Das Monidipa
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (112 p.)
Soggetto topico Environmental economics
Research and information: general
Soggetto non controllato AOD recovery
CNN
conditional random fields
CYGNSS
Dirichlet process
East Asia
feature-level fusion
Gamma distribution
GNSS-R
high wind speed inversion
infinite mixture models
knowledge distillation
LightGBM
n/a
noisy labels
oil spill detection
online setting
optical image
PCA-SVR
polarized SAR
random forest
remote sensing images
scene classification
spatiotemporal weight interpolation
SVR
synthetic aperture radar images
teacher-student
variational inference
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910585940903321
Das Monidipa  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui