top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Nonparametric Statistical Inference with an Emphasis on Information-Theoretic Methods
Nonparametric Statistical Inference with an Emphasis on Information-Theoretic Methods
Autore Mielniczuk Jan
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (226 p.)
Soggetto topico History of engineering and technology
Mechanical engineering and materials
Technology: general issues
Soggetto non controllato adaptive splines
archimedean copula
B-splines
change points
CIFE
CMI
conditional infomax feature extraction
conditional mutual information
consistency
consistent selection
entropy
estimation
extreme-value copula
gaussian mixture
generalized information criterion
generative tree model
high-dimensional regression
high-dimensional time series
influence functions
information measures
information theory
JMI
joint mutual information criterion
kernel estimation
learning systems
loss function
Markov blanket
maximum likelihood estimation
minimum distance estimation
misclassification risk
misspecification
model misspecification
multivariate analysis
n/a
network estimation
nonparametric variable selection criteria
nonstationarity
parameter estimation
penalized estimation
prediction methods
privacy
random predictors
right-censored data
robustness
semiparametric regression
statistical learning theory
subgaussianity
supervised classification
synthetic data transformation
tail dependency
time series
variable selection consistency
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910576873203321
Mielniczuk Jan  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Symmetry in Engineering Sciences
Symmetry in Engineering Sciences
Autore Montoya Francisco G
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 online resource (220 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato 3D slicer
A* algorithm
accessibility
adaptive threshold
aged
Agustín de Betancourt
anomaly detection
asymmetry
BP neural network
broad learning model
cathedral
classification
clustering
Coalbrookdale (Shropshire)
complex networks
computer engineering
computing applications
conditional mutual information
convexity/concavity
edge preserving
electrical circuits
electronic devices
energy dissipation
environmental modeling
evaluation model
express shipment
extension
fault diagnosis
feature interaction
feature selection
Fisher linear discriminant analysis
flying buttresses
friction damping
geometric modeling
geometry
graphic modelling
high order urban hospitals (HOUHs)
Hilbert transform
inclined plane
industrial archaeology
industrial heritage
lifting wavelet
linearization technique
local data features
local inflection
local monotonicity
local preserving projection
mechanical structures
mobile robot
noise detector
optimization
optimization criteria
optimum
path planning
path search
peaks distribution
railcar flow distribution
railway network
railway transportation
rampant arch
random forest
random value impulse noise
ring damper
robots
rolling bearings
segmentation
semi-supervised random forest
sensitivity analysis
service network design
support vector machine
symmetry
synchronization
thin-walled gear
time-space network
topology
traffic congestion
traffic control
traffic forecasting
trip impedance based on public transportation
tumor
urban traffic planning
variational mode decomposition
vibration
virtual reconstruction
weighted mean filter
ISBN 3-03921-875-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367742303321
Montoya Francisco G  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui