top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Evolutionary Computation & Swarm Intelligence
Evolutionary Computation & Swarm Intelligence
Autore Caraffini Fabio
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (286 p.)
Soggetto topico Information technology industries
Soggetto non controllato dynamic stream clustering
online clustering
metaheuristics
optimisation
population based algorithms
density based clustering
k-means centroid
concept drift
concept evolution
imbalanced data
screening criteria
DE-MPFSC algorithm
Markov process
entanglement degree
data integration
PSO
robot
manipulator
analysis
kinematic parameters
identification
approximate matching
context-triggered piecewise hashing
edit distance
fuzzy hashing
LZJD
multi-thread programming
sdhash
signatures
similarity detection
ssdeep
maximum k-coverage
redundant representation
normalization
genetic algorithm
hybrid algorithms
memetic algorithms
particle swarm
multi-objective deterministic optimization, derivative-free
global/local optimization
simulation-based design optimization
wireless sensor networks
routing
Swarm Intelligence
Particle Swarm Optimization
Social Network Optimization
compact optimization
discrete optimization
large-scale optimization
one billion variables
evolutionary algorithms
estimation distribution algorithms
algorithmic design
metaheuristic optimisation
evolutionary computation
swarm intelligence
memetic computing
parameter tuning
fitness trend
Wilcoxon rank-sum
Holm–Bonferroni
benchmark suite
data sampling
feature selection
instance weighting
nature-inspired algorithms
meta-heuristic algorithms
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557283803321
Caraffini Fabio  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical Machine Learning for Human Behaviour Analysis
Statistical Machine Learning for Human Behaviour Analysis
Autore Moeslund Thomas
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (300 p.)
Soggetto topico History of engineering & technology
Soggetto non controllato multi-objective evolutionary algorithms
rule-based classifiers
interpretable machine learning
categorical data
hand sign language
deep learning
restricted Boltzmann machine (RBM)
multi-modal
profoundly deaf
noisy image
ensemble methods
adaptive classifiers
recurrent concepts
concept drift
stock price direction prediction
toe-off detection
gait event
silhouettes difference
convolutional neural network
saliency detection
foggy image
spatial domain
frequency domain
object contour detection
discrete stationary wavelet transform
attention allocation
attention behavior
hybrid entropy
information entropy
single pixel single photon image acquisition
time-of-flight
action recognition
fibromyalgia
Learning Using Concave and Convex Kernels
Empatica E4
self-reported survey
speech emotion recognition
3D convolutional neural networks
k-means clustering
spectrograms
context-aware framework
accuracy
false negative rate
individual behavior estimation
statistical-based time-frequency domain and crowd condition
emotion recognition
gestures
body movements
Kinect sensor
neural networks
face analysis
face segmentation
head pose estimation
age classification
gender classification
singular point detection
boundary segmentation
blurring detection
fingerprint image enhancement
fingerprint quality
speech
committee of classifiers
biometric recognition
multimodal-based human identification
privacy
privacy-aware
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557288403321
Moeslund Thomas  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui