top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Cast Irons : Properties and Applications
Cast Irons : Properties and Applications
Autore Ferro Paolo
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (150 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato abrasive wear
boundary element method (BEM)
carbide volume fraction
cast iron
chemical composition
compacted graphite iron
computational homogenization
cooling rate
drilling machinability
dry machining
ductile cast irons
ductile iron
effective elastic properties
effective Young's modulus
eutectic carbide
fatigue
finite elements
gravity casting process simulation
hardness
high chromium cast irons
high-chromium
homogenization
image analysis
lamellar graphite iron
MatCalc
mechanical properties
micro-CT
microstructure
minimum quantity lubrication (MQL)
multiscale numerical methods
n/a
niobium alloying
nodular cast iron
periodic boundary conditions
plasticity modelling
pre-heating
primary austenite
representative volume elements (RVEs)
segregation
silicon solution strengthened ferritic ductile iron
simulation
solidification time
spheroidal graphite cast iron
tensile tests
thermal analysis
thickness
ultimate tensile strength
weldability
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Cast Irons
Record Nr. UNINA-9910557285703321
Ferro Paolo  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics / Felix Fritzen, David Ryckelynck
Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics / Felix Fritzen, David Ryckelynck
Autore Fritzen Felix
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (254 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato supervised machine learning
proper orthogonal decomposition (POD)
PGD compression
stabilization
nonlinear reduced order model
gappy POD
symplectic model order reduction
neural network
snapshot proper orthogonal decomposition
3D reconstruction
microstructure property linkage
nonlinear material behaviour
proper orthogonal decomposition
reduced basis
ECSW
geometric nonlinearity
POD
model order reduction
elasto-viscoplasticity
sampling
surrogate modeling
model reduction
enhanced POD
archive
modal analysis
low-rank approximation
computational homogenization
artificial neural networks
unsupervised machine learning
large strain
reduced-order model
proper generalised decomposition (PGD)
a priori enrichment
elastoviscoplastic behavior
error indicator
computational homogenisation
empirical cubature method
nonlinear structural mechanics
reduced integration domain
model order reduction (MOR)
structure preservation of symplecticity
heterogeneous data
reduced order modeling (ROM)
parameter-dependent model
data science
Hencky strain
dynamic extrapolation
tensor-train decomposition
hyper-reduction
empirical cubature
randomised SVD
machine learning
inverse problem plasticity
proper symplectic decomposition (PSD)
finite deformation
Hamiltonian system
DEIM
GNAT
ISBN 9783039214105
3039214101
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367759403321
Fritzen Felix  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui