Vai al contenuto principale della pagina

Advances in Remote Sensing-based Disaster Monitoring and Assessment



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Im Jungho Visualizza persona
Titolo: Advances in Remote Sensing-based Disaster Monitoring and Assessment Visualizza cluster
Pubblicazione: Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica: 1 online resource (232 p.)
Soggetto topico: Research and information: general
Soggetto non controllato: accelerometer sensor
anomaly detection
Beijing urban area
building construction
burn index
chaparral ecosystem
China
compressible sediment layer
debris flow
deep learning
deep neural network
disaster monitoring
dryness monitoring
empirical model function
flash flood
floodplain delineation
forest fire
forest recovery
gross primary production
groundwater level
Himawari-8
Himawari-8 AHI
inaccessible region
land subsidence
Landsat-8
live fuel moisture
LSSVM
machine learning
MODIS
n/a
NIR-Red spectral space
PE
PS-InSAR
random forest
remote sensing
risk
satellite remote sensing
satellite vegetation indices
SDE
soil moisture
South Korea
Southern California
threshold-based algorithm
total precipitable water
tropical cyclone formation
uneven settlement
vegetation index
wildfire
WindSat
wireless sensor network
XGBoost
Xinjiang province of China
Persona (resp. second.): ParkHaemi
TakeuchiWataru
ImJungho
Sommario/riassunto: Remote sensing data and techniques have been widely used for disaster monitoring and assessment. In particular, recent advances in sensor technologies and artificial intelligence-based modeling are very promising for disaster monitoring and readying responses aimed at reducing the damage caused by disasters. This book contains eleven scientific papers that have studied novel approaches applied to a range of natural disasters such as forest fire, urban land subsidence, flood, and tropical cyclones.
Titolo autorizzato: Advances in Remote Sensing-based Disaster Monitoring and Assessment  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910557765003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui