top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Memristors for Neuromorphic Circuits and Artificial Intelligence Applications
Memristors for Neuromorphic Circuits and Artificial Intelligence Applications
Autore Suñé Jordi
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (244 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato AI
artificial intelligence
artificial neural network
artificial synapse
autocovariance
boost-factor adjustment
character recognition
circuit design
compact model
cortical neurons
crossbar array
deep learning networks
defect-tolerant spatial pooling
electronic synapses
emulator
Flash memories
graphene oxide
hardware-based deep learning ICs
hierarchical temporal memory
laser
memristive devices
memristor
memristor crossbar
memristor-CMOS hybrid circuit
memristors
multiscale modeling
neocortex
neural network hardware
neural networks
neuromorphic
neuromorphic computing
neuromorphic engineering
neuromorphic hardware
neuromorphic systems
neuromorphics
optimization
OxRAM
pattern recognition
pavlov
reinforcement learning
resistive switching
RRAM
self-organization maps
sensory and hippocampal responses
simulation
spike-timing-dependent plasticity
spiking neural network
spiking neural networks
STDP
strongly correlated oxides
synapse
synaptic device
synaptic plasticity
synaptic weight
temporal pooling
time series modeling
transistor-like devices
variability
vertical RRAM
wire resistance
ISBN 3-03928-577-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404090703321
Suñé Jordi  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Miniaturized Transistors / Lado Filipovic, Tibor Grasser
Miniaturized Transistors / Lado Filipovic, Tibor Grasser
Autore Filipovic Lado
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (202 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato MOSFET
total ionizing dose (TID)
low power consumption
process simulation
two-dimensional material
negative-capacitance
power consumption
technology computer aided design (TCAD)
thin-film transistors (TFTs)
band-to-band tunneling (BTBT)
nanowires
inversion channel
metal oxide semiconductor field effect transistor (MOSFET)
spike-timing-dependent plasticity (STDP)
field effect transistor
segregation
systematic variations
Sentaurus TCAD
indium selenide
nanosheets
technology computer-aided design (TCAD)
high-? dielectric
subthreshold bias range
statistical variations
fin field effect transistor (FinFET)
compact models
non-equilibrium Green's function
etching simulation
highly miniaturized transistor structure
compact model
silicon nanowire
surface potential
Silicon-Germanium source/drain (SiGe S/D)
nanowire
plasma-aided molecular beam epitaxy (MBE)
phonon scattering
mobility
silicon-on-insulator
drain engineered
device simulation
variability
semi-floating gate
synaptic transistor
neuromorphic system
theoretical model
CMOS
ferroelectrics
tunnel field-effect transistor (TFET)
SiGe
metal gate granularity
buried channel
ON-state
bulk NMOS devices
ambipolar
piezoelectrics
tunnel field effect transistor (TFET)
FinFETs
polarization
field-effect transistor
line edge roughness
random discrete dopants
radiation hardened by design (RHBD)
low energy
flux calculation
doping incorporation
low voltage
topography simulation
MOS devices
low-frequency noise
high-k
layout
level set
process variations
subthreshold
metal gate stack
electrostatic discharge (ESD)
ISBN 9783039210114
3039210114
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346680003321
Filipovic Lado  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui