Advances in Artificial Intelligence: Models, Optimization, and Machine Learning |
Autore | Leon Florin |
Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (362 p.) |
Soggetto topico |
Research & information: general
Mathematics & science |
Soggetto non controllato |
large margin nearest neighbor regression
distance metrics prototypes evolutionary algorithm approximate differential optimization multiple point hill climbing adaptive sampling free radical polymerization autonomous driving object tracking trajectory prediction deep neural networks stochastic methods applied machine learning classification and regression data mining ensemble model engineering informatics gender-based violence in Mexico twitter messages class imbalance k-nearest neighbor instance-based learning graph neural network deep learning hyperparameters machine learning optimization inference metaheuristics animal-inspired exploration exploitation hot rolled strip steel surface defects defect classification knockout tournament dynamic programming algorithm computational complexity combinatorics intelligent transport systems traffic control spatial-temporal variable speed limit multi-agent systems reinforcement learning distributed W-learning urban motorways multi-agent framework NET framework simulations agent-based systems agent algorithms software design multisensory fingerprint interoperability DeepFKTNet classification generative adversarial networks image classification transfer learning plastic bottle |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Advances in Artificial Intelligence |
Record Nr. | UNINA-9910580212403321 |
Leon Florin
![]() |
||
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Data Structures in Java |
Autore | Campesato Oswald |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Bloomfield : , : Mercury Learning & Information, , 2023 |
Descrizione fisica | 1 online resource (248 pages) |
Disciplina | 005.133 |
Soggetto topico |
Data structures (Computer science)
Java (Computer program language) COMPUTERS / Programming Languages / Java |
Soggetto non controllato |
XOR
arrays business combinatorics computer science data analysis queues recursion stacks strings |
ISBN |
1-68392-953-5
1-68392-954-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Dedication -- Contents -- Preface -- Chapter 1: Introduction to Java -- A Very Brief Introduction to Java -- Downloading a Java Release (Short Version) -- Selecting a Version of Java (Detailed Version) -- Java 8 and Java 11 -- Java Version Numbers -- JRE Versus a JDK -- Java Distributions -- Java IDEs -- Data Types, Operators, and Their Precedence -- Java Comments -- Java Operators -- Creating and Compiling Java Classes -- "Hello World" and Working With Numbers -- The Java String Class -- Java Strings With Metacharacters -- The Java New Operator -- Equality of Strings -- Comparing Strings -- Searching for a Substring in Java -- Useful String Methods in Java -- Parsing Strings in Java -- Conditional Logic in Java -- Determining Leap Years -- Finding the Divisors of a Number -- Checking for Palindromes -- Working With Arrays of Strings -- Working With the StringBuilder Class -- Static Methods in Java -- Other Static Types in Java -- Summary -- Chapter 2: Recursion and Combinatorics -- What Is Recursion? -- Arithmetic Series -- Calculating Arithmetic Series (Iterative) -- Calculating Arithmetic Series (Recursive) -- Calculating Partial Arithmetic Series -- Geometric Series -- Calculating a Geometric Series (Iterative) -- Calculating Geometric Series (Recursive) -- Factorial Values -- Calculating Factorial Values (Iterative) -- Calculating Factorial Values (Recursive) -- Calculating Factorial Values (Tail Recursion) -- Fibonacci Numbers -- Calculating Fibonacci Numbers (Recursive) -- Calculating Fibonacci Numbers (Iterative) -- Task: Reverse a String via Recursion -- Task: Check for Balanced Parentheses -- Task: Calculate the Number of Digits -- Task: Determine if a Positive Integer is Prime -- Task: Find the Prime Divisors of a Positive Integer -- Task: Goldbach's Conjecture.
Task: Calculate the GCD (Greatest Common Divisor) -- Task: Calculate the LCM (Lowest Common Multiple) -- What Is Combinatorics? -- Working With Permutations -- Working With Combinations -- The Number of Subsets of a Finite Set -- Task: Subsets Containing a Value Larger Than k -- Summary -- Chapter 3: Strings and Arrays -- Time and Space Complexity -- Task: Maximum and Minimum Powers of an Integer -- Task: Binary Substrings of a Number -- Task: Common Substring of Two Binary Numbers -- Task: Multiply and Divide via Recursion -- Task: Sum of Prime and Composite Numbers -- Task: Count Word Frequencies -- Task: Check if a String Contains Unique Characters -- Task: Insert Characters in a String -- Task: String Permutations -- Task: Check for Palindromes -- Task: Check for Longest Palindrome -- Working With Sequences of Strings -- The Maximum Length of a Repeated Character in a String -- Find a Given Sequence of Characters in a String -- Task: Longest Sequences of Substrings -- The Longest Sequence of Unique Characters -- The Longest Repeated Substring -- Working With 1D Arrays -- Rotate an Array -- Task: Invert Adjacent Array Elements -- Task: Shift Nonzero Elements Leftward -- Task: Sort Array In-Place in O(n) Without a Sort Function -- Task: Generate 0 That Is Three Times More Likely Than a 1 -- Task: Invert Bits in Even and Odd Positions -- Task: Check for Adjacent Set Bits in a Binary Number -- Task: Count Bits in a Range of Numbers -- Task: Find the Right-Most Set Bit in a Number -- Task: The Number of Operations to Make All Characters Equal -- Task: Compute XOR without XOR for Two Binary Numbers -- Task: Swap Adjacent Bits in Two Binary Numbers -- Working With 2D Arrays -- The Transpose of a Matrix -- Summary -- Chapter 4: Search and Sort Algorithms -- Search Algorithms -- Linear Search -- Binary Search Walk-Through. Binary Search (Iterative Solution) -- Binary Search (Recursive Solution) -- Well-Known Sorting Algorithms -- Bubble Sort -- Find Anagrams in a List of Words -- Selection Sort -- Insertion Sort -- Comparison of Sort Algorithms -- Merge Sort -- Merge Sort With a Third Array -- Merge Sort Without a Third Array -- Merge Sort: Shift Elements From End of Lists -- How Does Quick Sort Work? -- Quick Sort Code Sample -- Shell Sort -- Task: Sorted Arrays and the Sum of Two Numbers -- Summary -- Chapter 5: Linked Lists (1) -- Types of Data Structures -- Linear Data Structures -- Nonlinear Data Structures -- Data Structures and Operations -- Operations on Data Structures -- What Are Singly Linked Lists? -- Tradeoffs for Linked Lists -- Singly Linked Lists: Create and Append Operations -- A Node Class for Singly Linked Lists -- Java Code for Appending a Node -- Finding a Node in a Linked List -- Appending a Node in a Linked List -- Finding a Node in a Linked List (Method 2) -- Singly Linked Lists: Update and Delete Operations -- Updating a Node in a Singly Linked List -- Java Code to Update a Node -- Deleting a Node in a Linked List -- Java Code for Deleting a Node -- Java Code for a Circular Linked List -- Java Code for Updating a Circular Linked List -- Working With Doubly Linked Lists (DLL) -- A Node Class for Doubly Linked Lists -- Appending a Node in a Doubly Linked List -- Java Code for Appending a Node -- Java Code for Inserting a New Root Node -- Java Code for Inserting an Intermediate Node -- Traversing the Nodes in a Doubly Linked List -- Updating a Node in a Doubly Linked List -- Java Code to Update a Node -- Deleting a Node in a Doubly Linked List -- Java Code to Delete a Node -- Summary -- Chapter 6: Linked Lists (2) -- Task: Adding Numbers in a Linked List (1) -- Task: Adding Numbers in a Linked List (2) -- Task: Adding Numbers in a Linked List (3). Task: Display the First k Nodes -- Task: Display the Last k Nodes -- Reverse a Singly Linked List via Recursion -- Task: Remove Duplicates -- Task: Concatenate Two Lists -- Task: Merge Two Ordered Linked Lists -- Task: Split an Ordered List Into Two Lists -- Task: Remove a Given Node from a List -- Task: Find the Middle Element in a List -- Task: Reverse a Linked List -- Task: Check for Palindrome in a Linked List -- Summary -- Chapter 7: Queues and Stacks -- What Is a Queue? -- Types of Queues -- Creating a Queue Using an Array List -- Creating a Queue Using an Array List -- Other Types of Queues -- What Is a Stack? -- Use Cases for Stacks -- Operations With Stacks -- Working With Stacks -- Task: Reverse and Print Stack Values -- Task: Display the Min and Max Stack Values (1) -- Task: Reverse a String Using a Stack -- Task: Find Stack Palindromes -- Task: Balanced Parentheses -- Task: Tokenize Arithmetic Expressions -- Task: Classify Tokens in Arithmetic Expressions -- Infix, Prefix, and Postfix Notations -- Summary -- Index. |
Record Nr. | UNINA-9910861061603321 |
Campesato Oswald
![]() |
||
Bloomfield : , : Mercury Learning & Information, , 2023 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Making and Breaking Mathematical Sense : Histories and Philosophies of Mathematical Practice / / Roi Wagner |
Autore | Wagner Roi |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2017] |
Descrizione fisica | 1 online resource (251 pages) |
Disciplina | 510.1 |
Soggetto topico |
Mathematics - Philosophy - History
Mathematics - History |
Soggetto genere / forma |
History
Electronic books. |
Soggetto non controllato |
Benedetto
Black-Scholes formula Eugene Wigner Friedrich W.J. Schelling George Lakoff Gilles Deleuze Hermann Cohen Hilary Putnam Johann G. Fichte Logic of Sensation Mark Steiner Rafael Nez Stanislas Dehaene Vincent Walsh Water J. Freeman III abbaco algebra arithmetic authority cognitive theory combinatorics conceptual freedom constraints economy gender role stereotypes generating functions geometry inferences infinities infinity mathematical cognition mathematical concepts mathematical cultures mathematical domains mathematical entities mathematical evolution mathematical interpretation mathematical language mathematical metaphor mathematical norms mathematical objects mathematical practice mathematical signs mathematical standards mathematical statements mathematics natural order natural sciences nature negative numbers number sense option pricing philosophy of mathematics reality reason relevance semiosis sexuality stable marriage problem |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title; Copyright; Dedication; Contents; Acknowledgments; Introduction; What Philosophy of Mathematics Is Today; What Else Philosophy of Mathematics Can Be; A Vignette: Option Pricing and the Black-Scholes Formula; Outline of This Book; Chapter 1: Histories of Philosophies of Mathematics; History 1: On What There Is, Which Is a Tension between Natural Order and Conceptual Freedom; History 2: The Kantian Matrix, Which Grants Mathematics a Constitutive Intermediary Epistemological Position; History 3: Monster Barring, Monster Taming, and Living with Mathematical Monsters.
History 4: Authority, or Who Gets to Decide What Mathematics Is AboutThe "Yes, Please!" Philosophy of Mathematics; Chapter 2: The New Entities of Abbacus and Renaissance Algebra; Abbacus and Renaissance Algebraists; The Emergence of the Sign of the Unknown; First Intermediary Reflection; The Arithmetic of Debited Values; Second Intermediary Reflection; False and Sophistic Entities; Final Reflection and Conclusion; Chapter 3: A Constraints-Based Philosophy of Mathematical Practice; Dismotivation; The Analytic A Posteriori; Consensus; Interpretation; Reality; Constraints; Relevance; Conclusion. Chapter 4: Two Case Studies of Semiosis in MathematicsAmbiguous Variables in Generating Functions; Between Formal Interpretations; Models and Applications; Openness to Interpretation; Gendered Signs in a Combinatorial Problem; The Problem; Gender Role Stereotypes and Mathematical Results; Mathematical Language and Its Reality; The Forking Paths of Mathematical Language; Chapter 5: Mathematics and Cognition; The Number Sense; Mathematical Metaphors; Some Challenges to the Theory of Mathematical Metaphors; Best Fit for Whom?; What Is a Conceptual Domain?; In Which Direction Does the Theory Go? So How Should We Think about Mathematical Metaphors?An Alternative Neural Picture; Another Vision of Mathematical Cognition; From Diagrams to Haptic Vision; Haptic Vision in Practice; Chapter 6: Mathematical Metaphors Gone Wild; What Passes between Algebra and Geometry; Piero della Francesca (Italy, Fifteenth Century); Omar Khayyam (Central Asia, Eleventh Century); Rene Descartes (France, Seventeenth Century); Rafael Bombelli (Italy, Sixteenth Century); Conclusion; A Garden of Infinities; Limits; Infinitesimals and Actual Infinities; Chapter 7: Making a World, Mathematically; Fichte. SchellingHermann Cohen; The Unreasonable Applicability of Mathematics; Bibliography; Index. |
Record Nr. | UNINA-9910154298703321 |
Wagner Roi
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2017] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|