top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Deep Learning in Medical Image Analysis
Deep Learning in Medical Image Analysis
Autore Zhang Yudong
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (458 p.)
Soggetto non controllato 1D-convolutional neural network
3D segmentation
active surface
ARMD
artificial intelligence
autism
bayesian inference
black box
brain tumor
breast cancer
cancer
cancer prediction
cervical cancer
change detection
classifiers
colon cancer
computation
computed tomography (CT)
computer vision
computers in medicine
convolutional neural network
convolutional neural networks
COVID-19
CycleGAN
data augmentation
deep learning
deep learning classification
dermoscopic images
diagnosis
diagnostics
digital pathology
discriminant analysis
domain adaptation
domain transfer
ECG signal detection
egocentric camera
explainability
explainable AI
fMRI
gibbs sampling
glcm matrix
HER2
image classification
image processing
image reconstruction
imaging
infection detection
interpretable/explainable machine learning
low-dose
lung cancer
lung disease detection
machine learning
machine learning models
macroscopic images
magnetic resonance imaging (MRI)
MCMC
medical image analysis
medical image segmentation
medical images
medical imaging
melanoma
meta-learning
microwave breast imaging
MRI
multimodal learning
multiple instance learning
musculoskeletal images
n/a
neo-adjuvant treatment
object detection
open surgery
optimizers
PET imaging
portable monitoring devices
quantitative comparison
segmentation
shifted-scaled dirichlet distribution
skin lesion segmentation
sparse-angle
surgical tools
taxonomy
texture analysis
transfer learning
tumor detection
tumour cellularity
U-Net
unsupervised learning
white box
whole slide image processing
X-ray images
XAI
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557435103321
Zhang Yudong  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent Biosignal Analysis Methods
Intelligent Biosignal Analysis Methods
Autore Jović Alan
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (256 p.)
Soggetto topico Information technology industries
Soggetto non controllato accelerometer
accuracy
Alzheimer's disease
autonomic nervous system
brain functional connectivity
classifiers
CNN
convolution neural network (CNN)
covariate shift
cross-participant
DEAP
deep learning
disgust
drowsiness classification
drowsiness detection
EEG
EEG features
electrocardiogram
electrocardiography
electroencephalogram (EEG)
electroencephalography (EEG)
emotion
emotion recognition
emotional state
event-centered data segmentation
eye blinks rate
fall detection
fatigue detection
feature extraction
feature selection
frequency band fusion
galvanic skin response
heart rate
individual differences
inter-participant
inter-subject variability
k-fold validation
machine learning
mental workload
Mish
myocardial infarction
n/a
neural network-based refinement
non-local attention mechanism
non-stationarity
olfactory training
optimal shrinkage
phase-locked value (PLV)
photoplethysmography (PPG)
psychophysics
residual attention
residual network
sensitivity
signal quality index
skin conductance level
sleep stage scoring
sleep staging
smell
spatial transformer networks
stress
surgery image
T-end annotation
tSQI
wearable device
wearable sensors
window duration
wine sensory analysis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557354803321
Jović Alan  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui