Deep Learning in Medical Image Analysis |
Autore | Zhang Yudong |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
Descrizione fisica | 1 electronic resource (458 p.) |
Soggetto non controllato |
interpretable/explainable machine learning
image classification image processing machine learning models white box black box cancer prediction deep learning multimodal learning convolutional neural networks autism fMRI texture analysis melanoma glcm matrix machine learning classifiers explainability explainable AI XAI medical imaging diagnosis ARMD change detection unsupervised learning microwave breast imaging image reconstruction tumor detection digital pathology whole slide image processing multiple instance learning deep learning classification HER2 medical images transfer learning optimizers neo-adjuvant treatment tumour cellularity cancer breast cancer diagnostics imaging computation artificial intelligence 3D segmentation active surface discriminant analysis PET imaging medical image analysis brain tumor cervical cancer colon cancer lung cancer computer vision musculoskeletal images lung disease detection taxonomy convolutional neural network CycleGAN data augmentation dermoscopic images domain transfer macroscopic images skin lesion segmentation infection detection COVID-19 X-ray images bayesian inference shifted-scaled dirichlet distribution MCMC gibbs sampling object detection surgical tools open surgery egocentric camera computers in medicine segmentation MRI ECG signal detection portable monitoring devices 1D-convolutional neural network medical image segmentation domain adaptation meta-learning U-Net computed tomography (CT) magnetic resonance imaging (MRI) low-dose sparse-angle quantitative comparison |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557435103321 |
Zhang Yudong
![]() |
||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Intelligent Biosignal Analysis Methods |
Autore | Jović Alan |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
Descrizione fisica | 1 electronic resource (256 p.) |
Soggetto topico | Information technology industries |
Soggetto non controllato |
sleep stage scoring
neural network-based refinement residual attention T-end annotation signal quality index tSQI optimal shrinkage emotion EEG DEAP CNN surgery image disgust autonomic nervous system electrocardiogram galvanic skin response olfactory training psychophysics smell wearable sensors wine sensory analysis accuracy convolution neural network (CNN) classifiers electrocardiography k-fold validation myocardial infarction sensitivity sleep staging electroencephalography (EEG) brain functional connectivity frequency band fusion phase-locked value (PLV) wearable device emotional state mental workload stress heart rate eye blinks rate skin conductance level emotion recognition electroencephalogram (EEG) photoplethysmography (PPG) machine learning feature extraction feature selection deep learning non-stationarity individual differences inter-subject variability covariate shift cross-participant inter-participant drowsiness detection EEG features drowsiness classification fatigue detection residual network Mish spatial transformer networks non-local attention mechanism Alzheimer's disease fall detection event-centered data segmentation accelerometer window duration |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557354803321 |
Jović Alan
![]() |
||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|