Claim Models: Granular Forms and Machine Learning Forms
| Claim Models: Granular Forms and Machine Learning Forms |
| Autore | Taylor Greg |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
| Descrizione fisica | 1 online resource (108 p.) |
| Soggetto topico | Pharmaceutical chemistry and technology |
| Soggetto non controllato |
actuarial
claim watching classification and regression trees gradient boosting granular models individual claims reserving individual models loss reserving machine learning n/a neural networks payments per claim incurred predictive modeling risk pricing |
| ISBN | 3-03928-665-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Claim Models |
| Record Nr. | UNINA-9910404090203321 |
Taylor Greg
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Data mining for the social sciences : an introduction / / Paul Attewell and David B. Monaghan
| Data mining for the social sciences : an introduction / / Paul Attewell and David B. Monaghan |
| Autore | Attewell Paul A. <1949-> |
| Pubbl/distr/stampa | Oakland, California : , : University of California Press, , 2015 |
| Descrizione fisica | 1 online resource (265 p.) |
| Disciplina | 006.3/12 |
| Soggetto topico |
Social sciences - Data processing
Social sciences - Statistical methods Data mining |
| Soggetto non controllato |
analyzing data
bayesian networks big data bootstrapping business analytics chaid classification and regression trees classification trees confusion matrix data analysis data mining data processing data scholarship data science hardware for data mining heteroscedasticity naive bayes partition trees permutation tests scholarly data social science social scientists software for data mining statistical methods statistical modeling studying data text mining vif regression weka |
| ISBN |
0-520-28098-9
0-520-96059-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front matter -- CONTENTS -- ACKNOWLEDGMENTS -- 1. WHAT IS DATA MINING? -- 2. CONTRASTS WITH THE CONVENTIONAL STATISTICAL APPROACH -- 3. SOME GENERAL STRATEGIES USED IN DATA MINING -- 4. IMPORTANT STAGES IN A DATA MINING PROJECT -- 5. PREPARING TRAINING AND TEST DATASETS -- 6. VARIABLE SELECTION TOOLS -- 7. CREATING NEW VARIABLES -- 8. EXTRACTING VARIABLES -- 9. CLASSIFIERS -- 10. CLASSIFICATION TREES -- 11. NEURAL NETWORKS -- 12. CLUSTERING -- 13. LATENT CLASS ANALYSIS AND MIXTURE MODELS -- 14. ASSOCIATION RULES -- CONCLUSION. Where Next? -- BIBLIOGRAPHY -- NOTES -- INDEX |
| Record Nr. | UNINA-9910788152303321 |
Attewell Paul A. <1949->
|
||
| Oakland, California : , : University of California Press, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Data mining for the social sciences : an introduction / / Paul Attewell and David B. Monaghan
| Data mining for the social sciences : an introduction / / Paul Attewell and David B. Monaghan |
| Autore | Attewell Paul A. <1949-> |
| Pubbl/distr/stampa | Oakland, California : , : University of California Press, , 2015 |
| Descrizione fisica | 1 online resource (265 p.) |
| Disciplina | 006.3/12 |
| Soggetto topico |
Social sciences - Data processing
Social sciences - Statistical methods Data mining |
| Soggetto non controllato |
analyzing data
bayesian networks big data bootstrapping business analytics chaid classification and regression trees classification trees confusion matrix data analysis data mining data processing data scholarship data science hardware for data mining heteroscedasticity naive bayes partition trees permutation tests scholarly data social science social scientists software for data mining statistical methods statistical modeling studying data text mining vif regression weka |
| ISBN |
0-520-28098-9
0-520-96059-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front matter -- CONTENTS -- ACKNOWLEDGMENTS -- 1. WHAT IS DATA MINING? -- 2. CONTRASTS WITH THE CONVENTIONAL STATISTICAL APPROACH -- 3. SOME GENERAL STRATEGIES USED IN DATA MINING -- 4. IMPORTANT STAGES IN A DATA MINING PROJECT -- 5. PREPARING TRAINING AND TEST DATASETS -- 6. VARIABLE SELECTION TOOLS -- 7. CREATING NEW VARIABLES -- 8. EXTRACTING VARIABLES -- 9. CLASSIFIERS -- 10. CLASSIFICATION TREES -- 11. NEURAL NETWORKS -- 12. CLUSTERING -- 13. LATENT CLASS ANALYSIS AND MIXTURE MODELS -- 14. ASSOCIATION RULES -- CONCLUSION. Where Next? -- BIBLIOGRAPHY -- NOTES -- INDEX |
| Record Nr. | UNINA-9910814373503321 |
Attewell Paul A. <1949->
|
||
| Oakland, California : , : University of California Press, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Machine Learning for Energy Systems
| Machine Learning for Energy Systems |
| Autore | Sidorov Denis N |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
| Descrizione fisica | 1 online resource (272 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
abnormal defects
Adaptive Neuro-Fuzzy Inference System artificial intelligence blockchain blockchain technology cast-resin transformers classification classification and regression trees clustering component accident set cyber-physical systems data evolution mechanism decision tree energy internet energy management system energy router energy storage energy systems ensemble empirical mode decomposition extreme learning machine fatigue forecasting harmonic impedance harmonic impedance identification harmonic parameter harmonic responsibility hierarchical clustering high permeability renewable energy hybrid AC/DC power system hybrid interval forecasting industrial mathematics information security insulator fault forecast integrated energy system intelligent control Interfacial tension inverse problems linear regression model linearization load leveling machine learning maintenance monitoring data without phase angle MOPSO algorithm offshore wind farm optimization parameter estimation partial discharge pattern recognition photovoltaic output power forecasting power control power quality QoS index of energy flow relevance vector machine renewable energy source risk assessment rule extraction sample entropy scheduling optimization smart microgrid stochastic optimization time series forecasting traction network transformer oil parameters vacuum tank degasser Volterra equations Volterra models vulnerability wavelet packets wind power: wind speed: T-S fuzzy model: forecasting wind turbine |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557678803321 |
Sidorov Denis N
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||