top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Claim Models: Granular Forms and Machine Learning Forms
Claim Models: Granular Forms and Machine Learning Forms
Autore Taylor Greg
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (108 p.)
Soggetto topico Pharmaceutical chemistry and technology
Soggetto non controllato actuarial
claim watching
classification and regression trees
gradient boosting
granular models
individual claims reserving
individual models
loss reserving
machine learning
n/a
neural networks
payments per claim incurred
predictive modeling
risk pricing
ISBN 3-03928-665-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Claim Models
Record Nr. UNINA-9910404090203321
Taylor Greg  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data mining for the social sciences : an introduction / / Paul Attewell and David B. Monaghan
Data mining for the social sciences : an introduction / / Paul Attewell and David B. Monaghan
Autore Attewell Paul A. <1949->
Pubbl/distr/stampa Oakland, California : , : University of California Press, , 2015
Descrizione fisica 1 online resource (265 p.)
Disciplina 006.3/12
Soggetto topico Social sciences - Data processing
Social sciences - Statistical methods
Data mining
Soggetto non controllato analyzing data
bayesian networks
big data
bootstrapping
business analytics
chaid
classification and regression trees
classification trees
confusion matrix
data analysis
data mining
data processing
data scholarship
data science
hardware for data mining
heteroscedasticity
naive bayes
partition trees
permutation tests
scholarly data
social science
social scientists
software for data mining
statistical methods
statistical modeling
studying data
text mining
vif regression
weka
ISBN 0-520-28098-9
0-520-96059-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- CONTENTS -- ACKNOWLEDGMENTS -- 1. WHAT IS DATA MINING? -- 2. CONTRASTS WITH THE CONVENTIONAL STATISTICAL APPROACH -- 3. SOME GENERAL STRATEGIES USED IN DATA MINING -- 4. IMPORTANT STAGES IN A DATA MINING PROJECT -- 5. PREPARING TRAINING AND TEST DATASETS -- 6. VARIABLE SELECTION TOOLS -- 7. CREATING NEW VARIABLES -- 8. EXTRACTING VARIABLES -- 9. CLASSIFIERS -- 10. CLASSIFICATION TREES -- 11. NEURAL NETWORKS -- 12. CLUSTERING -- 13. LATENT CLASS ANALYSIS AND MIXTURE MODELS -- 14. ASSOCIATION RULES -- CONCLUSION. Where Next? -- BIBLIOGRAPHY -- NOTES -- INDEX
Record Nr. UNINA-9910788152303321
Attewell Paul A. <1949->  
Oakland, California : , : University of California Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data mining for the social sciences : an introduction / / Paul Attewell and David B. Monaghan
Data mining for the social sciences : an introduction / / Paul Attewell and David B. Monaghan
Autore Attewell Paul A. <1949->
Pubbl/distr/stampa Oakland, California : , : University of California Press, , 2015
Descrizione fisica 1 online resource (265 p.)
Disciplina 006.3/12
Soggetto topico Social sciences - Data processing
Social sciences - Statistical methods
Data mining
Soggetto non controllato analyzing data
bayesian networks
big data
bootstrapping
business analytics
chaid
classification and regression trees
classification trees
confusion matrix
data analysis
data mining
data processing
data scholarship
data science
hardware for data mining
heteroscedasticity
naive bayes
partition trees
permutation tests
scholarly data
social science
social scientists
software for data mining
statistical methods
statistical modeling
studying data
text mining
vif regression
weka
ISBN 0-520-28098-9
0-520-96059-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- CONTENTS -- ACKNOWLEDGMENTS -- 1. WHAT IS DATA MINING? -- 2. CONTRASTS WITH THE CONVENTIONAL STATISTICAL APPROACH -- 3. SOME GENERAL STRATEGIES USED IN DATA MINING -- 4. IMPORTANT STAGES IN A DATA MINING PROJECT -- 5. PREPARING TRAINING AND TEST DATASETS -- 6. VARIABLE SELECTION TOOLS -- 7. CREATING NEW VARIABLES -- 8. EXTRACTING VARIABLES -- 9. CLASSIFIERS -- 10. CLASSIFICATION TREES -- 11. NEURAL NETWORKS -- 12. CLUSTERING -- 13. LATENT CLASS ANALYSIS AND MIXTURE MODELS -- 14. ASSOCIATION RULES -- CONCLUSION. Where Next? -- BIBLIOGRAPHY -- NOTES -- INDEX
Record Nr. UNINA-9910814373503321
Attewell Paul A. <1949->  
Oakland, California : , : University of California Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning for Energy Systems
Machine Learning for Energy Systems
Autore Sidorov Denis N
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (272 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato abnormal defects
Adaptive Neuro-Fuzzy Inference System
artificial intelligence
blockchain
blockchain technology
cast-resin transformers
classification
classification and regression trees
clustering
component accident set
cyber-physical systems
data evolution mechanism
decision tree
energy internet
energy management system
energy router
energy storage
energy systems
ensemble empirical mode decomposition
extreme learning machine
fatigue
forecasting
harmonic impedance
harmonic impedance identification
harmonic parameter
harmonic responsibility
hierarchical clustering
high permeability renewable energy
hybrid AC/DC power system
hybrid interval forecasting
industrial mathematics
information security
insulator fault forecast
integrated energy system
intelligent control
Interfacial tension
inverse problems
linear regression model
linearization
load leveling
machine learning
maintenance
monitoring data without phase angle
MOPSO algorithm
offshore wind farm
optimization
parameter estimation
partial discharge
pattern recognition
photovoltaic output power forecasting
power control
power quality
QoS index of energy flow
relevance vector machine
renewable energy source
risk assessment
rule extraction
sample entropy
scheduling optimization
smart microgrid
stochastic optimization
time series forecasting
traction network
transformer oil parameters
vacuum tank degasser
Volterra equations
Volterra models
vulnerability
wavelet packets
wind power: wind speed: T-S fuzzy model: forecasting
wind turbine
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557678803321
Sidorov Denis N  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Opere

Altro...

Lingua di pubblicazione

Altro...

Data

Data di pubblicazione

Altro...