Advances in Computational Intelligence Applications in the Mining Industry |
Autore | Ganguli Rajive |
Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (324 p.) |
Soggetto topico |
Technology: general issues
History of engineering & technology |
Soggetto non controllato |
truck dispatching
mining equipment uncertainties orebody uncertainty discrete event simulation Q-learning grinding circuits minerals processing random forest decision trees machine learning knowledge discovery variable importance mineral prospectivity mapping random forest algorithm epithermal gold unstructured data blast impact empirical model mining fragmentation mine worker fatigue random forest model health and safety management stockpiles operational data mine-to-mill geostatistics ore control mine optimization digital twin modes of operation geological uncertainty multivariate statistics partial least squares regression oil sands bitumen extraction bitumen processability mine safety and health accidents narratives natural language processing random forest classification hyperspectral imaging multispectral imaging dimensionality reduction neighbourhood component analysis artificial intelligence mining exploitation masonry buildings damage risk analysis Bayesian network Naive Bayes Bayesian Network Structure Learning (BNSL) rock type mining geology bluetooth beacon classification and regression tree gaussian naïve bayes k-nearest neighbors support vector machine transport route transport time underground mine tactical geometallurgy data analytics in mining ball mill throughput measurement while drilling non-additivity coal petrographic analysis macerals image analysis semantic segmentation convolutional neural networks point cloud scaling fragmentation size analysis structure from motion |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557613103321 |
Ganguli Rajive | ||
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Statistical Data Modeling and Machine Learning with Applications |
Autore | Gocheva-Ilieva Snezhana |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
Descrizione fisica | 1 electronic resource (184 p.) |
Soggetto topico | Information technology industries |
Soggetto non controllato |
mathematical competency
assessment machine learning classification and regression tree CART ensembles and bagging ensemble model multivariate adaptive regression splines cross-validation dam inflow prediction long short-term memory wavelet transform input predictor selection hyper-parameter optimization brain-computer interface EEG motor imagery CNN-LSTM architectures real-time motion imagery recognition artificial neural networks banking hedonic prices housing quantile regression data quality citizen science consensus models clustering Gower's interpolation formula Gower's metric mixed data multidimensional scaling classification data-adaptive kernel functions image data multi-category classifier predictive models support vector machine stochastic gradient descent damped Newton convexity METABRIC dataset breast cancer subtyping deep forest multi-omics data categorical data similarity feature selection kernel density estimation non-linear optimization kernel clustering |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557359003321 |
Gocheva-Ilieva Snezhana | ||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|