top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Computational Intelligence Applications in the Mining Industry
Advances in Computational Intelligence Applications in the Mining Industry
Autore Ganguli Rajive
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (324 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato truck dispatching
mining equipment uncertainties
orebody uncertainty
discrete event simulation
Q-learning
grinding circuits
minerals processing
random forest
decision trees
machine learning
knowledge discovery
variable importance
mineral prospectivity mapping
random forest algorithm
epithermal gold
unstructured data
blast impact
empirical model
mining
fragmentation
mine worker fatigue
random forest model
health and safety management
stockpiles
operational data
mine-to-mill
geostatistics
ore control
mine optimization
digital twin
modes of operation
geological uncertainty
multivariate statistics
partial least squares regression
oil sands
bitumen extraction
bitumen processability
mine safety and health
accidents
narratives
natural language processing
random forest classification
hyperspectral imaging
multispectral imaging
dimensionality reduction
neighbourhood component analysis
artificial intelligence
mining exploitation
masonry buildings
damage risk analysis
Bayesian network
Naive Bayes
Bayesian Network Structure Learning (BNSL)
rock type
mining geology
bluetooth beacon
classification and regression tree
gaussian naïve bayes
k-nearest neighbors
support vector machine
transport route
transport time
underground mine
tactical geometallurgy
data analytics in mining
ball mill throughput
measurement while drilling
non-additivity
coal
petrographic analysis
macerals
image analysis
semantic segmentation
convolutional neural networks
point cloud scaling
fragmentation size analysis
structure from motion
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557613103321
Ganguli Rajive  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical Data Modeling and Machine Learning with Applications
Statistical Data Modeling and Machine Learning with Applications
Autore Gocheva-Ilieva Snezhana
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (184 p.)
Soggetto topico Information technology industries
Soggetto non controllato mathematical competency
assessment
machine learning
classification and regression tree
CART ensembles and bagging
ensemble model
multivariate adaptive regression splines
cross-validation
dam inflow prediction
long short-term memory
wavelet transform
input predictor selection
hyper-parameter optimization
brain-computer interface
EEG motor imagery
CNN-LSTM architectures
real-time motion imagery recognition
artificial neural networks
banking
hedonic prices
housing
quantile regression
data quality
citizen science
consensus models
clustering
Gower's interpolation formula
Gower's metric
mixed data
multidimensional scaling
classification
data-adaptive kernel functions
image data
multi-category classifier
predictive models
support vector machine
stochastic gradient descent
damped Newton
convexity
METABRIC dataset
breast cancer subtyping
deep forest
multi-omics data
categorical data
similarity
feature selection
kernel density estimation
non-linear optimization
kernel clustering
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557359003321
Gocheva-Ilieva Snezhana  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui