top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Computational Intelligence Applications in the Mining Industry
Advances in Computational Intelligence Applications in the Mining Industry
Autore Ganguli Rajive
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (324 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato accidents
artificial intelligence
ball mill throughput
Bayesian network
Bayesian Network Structure Learning (BNSL)
bitumen extraction
bitumen processability
blast impact
bluetooth beacon
classification and regression tree
coal
convolutional neural networks
damage risk analysis
data analytics in mining
decision trees
digital twin
dimensionality reduction
discrete event simulation
empirical model
epithermal gold
fragmentation
fragmentation size analysis
gaussian naïve bayes
geological uncertainty
geostatistics
grinding circuits
health and safety management
hyperspectral imaging
image analysis
k-nearest neighbors
knowledge discovery
macerals
machine learning
masonry buildings
measurement while drilling
mine optimization
mine safety and health
mine worker fatigue
mine-to-mill
mineral prospectivity mapping
minerals processing
mining
mining equipment uncertainties
mining exploitation
mining geology
modes of operation
multispectral imaging
multivariate statistics
n/a
Naive Bayes
narratives
natural language processing
neighbourhood component analysis
non-additivity
oil sands
operational data
ore control
orebody uncertainty
partial least squares regression
petrographic analysis
point cloud scaling
Q-learning
random forest
random forest algorithm
random forest classification
random forest model
rock type
semantic segmentation
stockpiles
structure from motion
support vector machine
tactical geometallurgy
transport route
transport time
truck dispatching
underground mine
unstructured data
variable importance
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557613103321
Ganguli Rajive  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical Data Modeling and Machine Learning with Applications
Statistical Data Modeling and Machine Learning with Applications
Autore Gocheva-Ilieva Snezhana
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (184 p.)
Soggetto topico Information technology industries
Soggetto non controllato artificial neural networks
assessment
banking
brain-computer interface
breast cancer subtyping
CART ensembles and bagging
categorical data
citizen science
classification
classification and regression tree
clustering
CNN-LSTM architectures
consensus models
convexity
cross-validation
dam inflow prediction
damped Newton
data quality
data-adaptive kernel functions
deep forest
EEG motor imagery
ensemble model
feature selection
Gower's interpolation formula
Gower's metric
hedonic prices
housing
hyper-parameter optimization
image data
input predictor selection
kernel clustering
kernel density estimation
long short-term memory
machine learning
mathematical competency
METABRIC dataset
mixed data
multi-category classifier
multi-omics data
multidimensional scaling
multivariate adaptive regression splines
n/a
non-linear optimization
predictive models
quantile regression
real-time motion imagery recognition
similarity
stochastic gradient descent
support vector machine
wavelet transform
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557359003321
Gocheva-Ilieva Snezhana  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui