top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Image Processing, Analysis and Recognition Technology
Advances in Image Processing, Analysis and Recognition Technology
Autore Frejlichowski Dariusz
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (386 p.)
Soggetto topico Information technology industries
Computer science
Soggetto non controllato CIELab
component Substitution
Pan sharpening
Pléiades VHR Image
coal
inertinite macerals
classification
multifractal analysis
support vector machine
block-based coding
video coding
H.265/HEVC
affine motion compensation
image registration
homography matrix
local homography transformation
convolutional neural network
moving direct linear transformation
super-resolution (SR)
convolution neural network (CNN)
Gene Expression Programming (GEP)
deep learning
image preclassification
suspicious behavior detection
motion
magnitude
gradient
reactivity
saliency
haze removal
dark channel
atmospheric-light estimation
coarse-to-fine search strategy
sparse dictionary
stable recovery
frame
RIP
local dimming
retinex theory
bi-histogram equalization
contrast ratio
details preservation
pansharpening
image fusion
image quality
Satellite Pour l'Observation de la Terre (SPOT) 6
spectral consistency
spatial consistency
synthesis
artificial intelligence
dental application
images
detection
parseval frame
transform
sparse representation
octave convolution
bilingual scene text reading
Ethiopic script
attention
nasal cytology
automatic cell segmentation
rhinology
image analysis
feature extraction
shape context
plant recognition
DPCNN
BOF
numeral spotting
historical document analysis
convolutional neural networks
deep transfer learning
handwritten digit recognition
spectrum correction
intensity correction
compressed sensing
tradeoff process
IKONOS
remote sensing
fine-tuning
learning rate scheduler
cyclical learning rates
label smoothing
classification accuracy
neural networks
salient object detection
RGB-D
object detection
small object
multi-scale sampling
balanced sampling
texture
structure
optical
coke
iron ore
sinter
image processing
segmentation
identification
action recognition
silhouette sequences
shape features
ambient assisted living
active ageing
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910576879103321
Frejlichowski Dariusz  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Geoinformatics in Citizen Science
Geoinformatics in Citizen Science
Autore Bordogna Gloria
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (206 p.)
Soggetto non controllato education
geoinformatics
GIS education
classification accuracy
latent class analysis
location-based social networks (LBSNs)
geoinformation in citizen science
toponym
recruitment
community mapping
user preference
land administration systems
positional accuracy
sample size
spatial proximity
crowdsourced geoinformation collection and analysis
air quality estimation
digital cartography
crowdsourcing
VGI in citizen science
crowdsourced data collection
social relationship effect
analysis
GIS
data quality
opportunistic data
volunteer
volunteered geographic information (VGI)
VGI
data fusion
algorithms
OpenStreetMap
volunteer geographic information
citizen science
ensemble
spatial bias
projects survey
Alaska
marine mammal
brown marmorated stink bug
social media
Environmental niche modeling
data analysis
Pentatomidae
QGIS
MaxEnt
spatial accuracy
clustering
air pollution
data import
sky images
ISBN 3-03921-073-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346690703321
Bordogna Gloria  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui