top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Statistical Data Modeling and Machine Learning with Applications
Statistical Data Modeling and Machine Learning with Applications
Autore Gocheva-Ilieva Snezhana
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (184 p.)
Soggetto topico Information technology industries
Soggetto non controllato artificial neural networks
assessment
banking
brain-computer interface
breast cancer subtyping
CART ensembles and bagging
categorical data
citizen science
classification
classification and regression tree
clustering
CNN-LSTM architectures
consensus models
convexity
cross-validation
dam inflow prediction
damped Newton
data quality
data-adaptive kernel functions
deep forest
EEG motor imagery
ensemble model
feature selection
Gower's interpolation formula
Gower's metric
hedonic prices
housing
hyper-parameter optimization
image data
input predictor selection
kernel clustering
kernel density estimation
long short-term memory
machine learning
mathematical competency
METABRIC dataset
mixed data
multi-category classifier
multi-omics data
multidimensional scaling
multivariate adaptive regression splines
n/a
non-linear optimization
predictive models
quantile regression
real-time motion imagery recognition
similarity
stochastic gradient descent
support vector machine
wavelet transform
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557359003321
Gocheva-Ilieva Snezhana  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical Machine Learning for Human Behaviour Analysis
Statistical Machine Learning for Human Behaviour Analysis
Autore Moeslund Thomas
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (300 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato 3D convolutional neural networks
accuracy
action recognition
adaptive classifiers
age classification
attention allocation
attention behavior
biometric recognition
blurring detection
body movements
boundary segmentation
categorical data
committee of classifiers
concept drift
context-aware framework
convolutional neural network
deep learning
discrete stationary wavelet transform
emotion recognition
Empatica E4
ensemble methods
face analysis
face segmentation
false negative rate
fibromyalgia
fingerprint image enhancement
fingerprint quality
foggy image
frequency domain
gait event
gender classification
gestures
hand sign language
head pose estimation
hybrid entropy
individual behavior estimation
information entropy
interpretable machine learning
k-means clustering
Kinect sensor
Learning Using Concave and Convex Kernels
multi-modal
multi-objective evolutionary algorithms
multimodal-based human identification
neural networks
noisy image
object contour detection
privacy
privacy-aware
profoundly deaf
recurrent concepts
restricted Boltzmann machine (RBM)
rule-based classifiers
saliency detection
self-reported survey
silhouettes difference
single pixel single photon image acquisition
singular point detection
spatial domain
spectrograms
speech
speech emotion recognition
statistical-based time-frequency domain and crowd condition
stock price direction prediction
time-of-flight
toe-off detection
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557288403321
Moeslund Thomas  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui