Deep Learning-Based Machinery Fault Diagnostics
| Deep Learning-Based Machinery Fault Diagnostics |
| Autore | Chen Hongtian |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
| Descrizione fisica | 1 online resource (290 p.) |
| Soggetto topico |
History of engineering & technology
Technology: general issues |
| Soggetto non controllato |
abnormal case removal
alumina concentration aluminum reduction process anti-noise attention mechanism autonomous underwater vehicle auxiliary model Bayesian network bearing fault detection belief rule base canonical correlation analysis canonical variate analysis case-based reasoning convolution fusion convolutional neural network data augmentation data-driven deep residual network distributed predictive control disturbance detection dynamic autoregressive latent variables model dynamics event-triggered control evidential reasoning evidential reasoning rule fault detection fault diagnosis fault tolerant control filter flywheel fault diagnosis fractional-order calculus theory fuzzy fault tree analysis gated recurrent unit gearbox fault diagnosis hammerstein output-error systems high-speed trains information transformation intelligent fault diagnosis interval type-2 Takagi-Sugeno fuzzy model just-in-time learning k-nearest neighbor analysis local outlier factor LSSVM multi-innovation identification theory n/a nonlinear networked systems ocean currents operational optimization parameter optimization power transmission system process monitoring PSO robust optimization sintering process spatiotemporal feature fusion stacked pruning sparse denoising autoencoder state identification statistical local analysis subspace identification system modelling thruster fault diagnostics variable time lag wavelet mutation |
| ISBN | 3-0365-5174-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910619469103321 |
Chen Hongtian
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Maintenance of Forest Biodiversity
| Maintenance of Forest Biodiversity |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2023 |
| Descrizione fisica | 1 online resource (258 p.) |
| Soggetto topico |
Biology, life sciences
Ecological science, the Biosphere Research & information: general |
| Soggetto non controllato |
aboveground biomass
acoustic indices altitude arbuscular mycorrhizal fungi beta diversity biodiversity monitoring biogeography biomass allocation birds canonical correlation analysis community assembly competitive exclusion deciduous broad-leaved forests dynamic changes environmental variables forest management functional richness functional trait gap size Godron stability habitat filtering Hainan island influence interspecific association interspecific competition intra- and interspecific interactions intraspecific competition litter decomposition microenvironment mortality process multi-site generalized dissimilarity modeling natural mixed forests natural regeneration net relatedness index niche theory nonstructural carbohydrates novel approach nutrient release object-based image analysis phylogenetic signal plant diversity PLFA analysis precipitation recruitment process regression dominant species replacement richness root system characteristics root-soil-microbial interactions seedling age seedling bank soil available phosphorus soil chemical elements soil chemical property soil depth layer soil microbe soil nutrients soil pH soil water content soundscape ecology spatial distribution spatial structure parameters species diversity spectrograms stand structural characteristic stand structure subtropical evergreen broadleaved forest temperature the Sankey diagram the southern Taihang Mountains tropical monsoonal forest understory vegetation urban forests β-diversity |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9911053219303321 |
| MDPI - Multidisciplinary Digital Publishing Institute, 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||