top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Deep Learning-Based Machinery Fault Diagnostics
Deep Learning-Based Machinery Fault Diagnostics
Autore Chen Hongtian
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (290 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato abnormal case removal
alumina concentration
aluminum reduction process
anti-noise
attention mechanism
autonomous underwater vehicle
auxiliary model
Bayesian network
bearing fault detection
belief rule base
canonical correlation analysis
canonical variate analysis
case-based reasoning
convolution fusion
convolutional neural network
data augmentation
data-driven
deep residual network
distributed predictive control
disturbance detection
dynamic autoregressive latent variables model
dynamics
event-triggered control
evidential reasoning
evidential reasoning rule
fault detection
fault diagnosis
fault tolerant control
filter
flywheel fault diagnosis
fractional-order calculus theory
fuzzy fault tree analysis
gated recurrent unit
gearbox fault diagnosis
hammerstein output-error systems
high-speed trains
information transformation
intelligent fault diagnosis
interval type-2 Takagi-Sugeno fuzzy model
just-in-time learning
k-nearest neighbor analysis
local outlier factor
LSSVM
multi-innovation identification theory
n/a
nonlinear networked systems
ocean currents
operational optimization
parameter optimization
power transmission system
process monitoring
PSO
robust optimization
sintering process
spatiotemporal feature fusion
stacked pruning sparse denoising autoencoder
state identification
statistical local analysis
subspace identification
system modelling
thruster fault diagnostics
variable time lag
wavelet mutation
ISBN 3-0365-5174-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619469103321
Chen Hongtian  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Maintenance of Forest Biodiversity
Maintenance of Forest Biodiversity
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2023
Descrizione fisica 1 online resource (258 p.)
Soggetto topico Biology, life sciences
Ecological science, the Biosphere
Research & information: general
Soggetto non controllato aboveground biomass
acoustic indices
altitude
arbuscular mycorrhizal fungi
beta diversity
biodiversity monitoring
biogeography
biomass allocation
birds
canonical correlation analysis
community assembly
competitive exclusion
deciduous broad-leaved forests
dynamic changes
environmental variables
forest management
functional richness
functional trait
gap size
Godron stability
habitat filtering
Hainan island
influence
interspecific association
interspecific competition
intra- and interspecific interactions
intraspecific competition
litter decomposition
microenvironment
mortality process
multi-site generalized dissimilarity modeling
natural mixed forests
natural regeneration
net relatedness index
niche theory
nonstructural carbohydrates
novel approach
nutrient release
object-based image analysis
phylogenetic signal
plant diversity
PLFA analysis
precipitation
recruitment process
regression dominant species
replacement
richness
root system characteristics
root-soil-microbial interactions
seedling age
seedling bank
soil available phosphorus
soil chemical elements
soil chemical property
soil depth layer
soil microbe
soil nutrients
soil pH
soil water content
soundscape ecology
spatial distribution
spatial structure parameters
species diversity
spectrograms
stand structural characteristic
stand structure
subtropical evergreen broadleaved forest
temperature
the Sankey diagram
the southern Taihang Mountains
tropical monsoonal forest
understory vegetation
urban forests
β-diversity
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911053219303321
MDPI - Multidisciplinary Digital Publishing Institute, 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui