Vai al contenuto principale della pagina

Deep Learning-Based Machinery Fault Diagnostics



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Chen Hongtian Visualizza persona
Titolo: Deep Learning-Based Machinery Fault Diagnostics Visualizza cluster
Pubblicazione: MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica: 1 electronic resource (290 p.)
Soggetto topico: Technology: general issues
History of engineering & technology
Soggetto non controllato: process monitoring
dynamics
variable time lag
dynamic autoregressive latent variables model
sintering process
hammerstein output-error systems
auxiliary model
multi-innovation identification theory
fractional-order calculus theory
canonical variate analysis
disturbance detection
power transmission system
k-nearest neighbor analysis
statistical local analysis
intelligent fault diagnosis
stacked pruning sparse denoising autoencoder
convolutional neural network
anti-noise
flywheel fault diagnosis
belief rule base
fuzzy fault tree analysis
Bayesian network
evidential reasoning
aluminum reduction process
alumina concentration
subspace identification
distributed predictive control
spatiotemporal feature fusion
gated recurrent unit
attention mechanism
fault diagnosis
evidential reasoning rule
system modelling
information transformation
parameter optimization
event-triggered control
interval type-2 Takagi-Sugeno fuzzy model
nonlinear networked systems
filter
gearbox fault diagnosis
convolution fusion
state identification
PSO
wavelet mutation
LSSVM
data-driven
operational optimization
case-based reasoning
local outlier factor
abnormal case removal
bearing fault detection
deep residual network
data augmentation
canonical correlation analysis
just-in-time learning
fault detection
high-speed trains
autonomous underwater vehicle
thruster fault diagnostics
fault tolerant control
robust optimization
ocean currents
Persona (resp. second.): ZhongKai
RanGuangtao
ChengChao
ChenHongtian
Sommario/riassunto: This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis.
Titolo autorizzato: Deep Learning-Based Machinery Fault Diagnostics  Visualizza cluster
ISBN: 3-0365-5174-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910619469103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui