top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Assessing Complexity in Physiological Systems through Biomedical Signals Analysis
Assessing Complexity in Physiological Systems through Biomedical Signals Analysis
Autore Castiglioni Paolo
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (296 p.)
Soggetto topico Mathematics & science
Research & information: general
Soggetto non controllato aging in human population
Alzheimer's disease
approximate entropy
autonomic nervous function
autonomic nervous system
baroreflex
baroreflex sensitivity (BRS)
biomarker
blood pressure
brain
brain dynamics
brain functional networks
brain signals
cardiovascular system
central autonomic network
cognitive task
complexity
complexity analysis
conditional transfer entropy
correlation dimension
cross-entropy
data compression
detrended fluctuation analysis
digital volume pulse (DVP)
dynamic functional connectivity
ECG
ectopic beat
entropy
event-related de/synchronization
factor analysis
fetal heart rate
fNIRS
fractal dimension
fragmentation
fuzzy entropy
heart rate
heart rate variability
heart rate variability (HRV)
hypobaric hypoxia
information dynamics
information flow
interconnectivity
K-means clustering algorithm
labor
largest Lyapunov exponent
linear prediction
mental arithmetics
motor imagery
multifractality
multiscale
multiscale complexity
multivariate time series analysis
network physiology
nonlinear analysis
partial information decomposition
penalized regression techniques
percussion entropy index (PEI)
photo-plethysmo-graphy (PPG)
posture
preterm
recurrence quantification analysis
refined composite multiscale entropy
rehabilitation medicine
relative consistency
Sampen
sample entropy
self-organized criticality
self-similarity
sEMG
single-channel analysis
State-space models
static functional connectivity
support vector machines classification
time series analysis
vasovagal syncope
vector autoregressive model
vector quantization
Zipf's law
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557601803321
Castiglioni Paolo  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical Modelling in Engineering & Human Behaviour 2018 / Luis Acedo Rodríguez, Lucas Jódar, Juan Carlos Cortés
Mathematical Modelling in Engineering & Human Behaviour 2018 / Luis Acedo Rodríguez, Lucas Jódar, Juan Carlos Cortés
Autore Rodríguez Luis Acedo
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (196 p.)
Soggetto non controllato uncertainty quantification
neutron diffusion equation
discrete dynamical systems
organisational risk
computational efficiency
AHP
random power series
order of convergence
IPV
multi-criteria decision-making
random non-autonomous second order linear differential equation
game of life
immune system
parameter estimation
cytokines
model
stem cells
Voynich Manuscript
uncertainty modelling
ode
bottling process
anti-torpedo decoy
decision-making
exponential polynomial
Hidden Markov models
systems of nonlinear equations
iterative methods
modified block Newton method
mathematical linguistics
DEMATEL
convergence
F-110 frigate
Chikungunya disease
nonlinear dynamical systems
cellular automata
mean square analytic solution
basin of attraction
violence index
macrophages
Markov chain Monte Carlo
human behaviour
block preconditioner
generalized eigenvalue problem
bone repair
numerical simulations
ASW
Newton’s method
independence index
mathematical modeling
brain dynamics
ISBN 9783038978053
3038978051
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346670003321
Rodríguez Luis Acedo  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui