top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Corporate Bankruptcy Prediction : International Trends and Local Experience
Corporate Bankruptcy Prediction : International Trends and Local Experience
Autore Prusak Błażej
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (202 p.)
Soggetto topico Economics, Finance, Business and Management
Soggetto non controllato artificial neural networks
audit expectation gap
bagging
bankruptcy
bankruptcy model
bankruptcy prediction
bankruptcy risk
boosting
chapter 11
citation mining
classification
company performance
corporate bankruptcy
corporate failure
credit risk modelling
Czech Republic
decision trees
default
ensemble classifiers
European large companies
failure
financial distress
financial ratios
forecasting
forecasting methods
fuzzy sets
insolvency
ISA 701
key audit matters
literature review
manufacturing insolvency
materiality
meta-analysis
models predicting financial distress
neural networks
payment defaults
phases of economic cycle
Poland
prediction
Principal Component Analysis
rating systems
regression count
scoring models
stacking
support vector machine
tax arrears
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Corporate Bankruptcy Prediction
Record Nr. UNINA-9910557527203321
Prusak Błażej  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Empirical Finance
Empirical Finance
Autore Hamori Shigeyuki
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 online resource (276 p.)
Soggetto non controllato algorithmic trading
ARDL
asset pricing model
asymmetric dependence
ATR
bagging
bank credit
bankruptcy prediction
boosting
causality-in-variance
city banks
cointegration
convolutional neural networks
copula
credit risk
cross-correlation function
crude oil futures prices forecasting
currency crisis
data mining
deep learning
deep neural network
dependence structure
earnings management
earnings manipulation
earnings quality
ensemble learning
exchange rate
exports
financial and non-financial variables
financial market stress
flight to quality
futures market
global financial crisis
gold return
housing and stock markets
housing loans
housing price
inertia
initial public offering
institutional investors' shareholdings
IPO
Japanese yen
latency
liquidity risk premium
LSTM
MACD
machine learning
market microstructure
n/a
natural gas
neural network
panel data model
piecewise regression model
predictive accuracy
price discovery
quantile regression
random forest
random forests
real estate development loans
robust regression
short-term forecasting
spark spread
statistical arbitrage
stop loss
structural break
SVM
take profit
text mining
text similarity
TVP-VAR model
US dollar
utility of international currency
Vietnam
volatility
wavelet transform
wholesale electricity
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346675203321
Hamori Shigeyuki  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical Methods for the Analysis of Genomic Data
Statistical Methods for the Analysis of Genomic Data
Autore Jiang Hui
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (136 p.)
Soggetto topico Mathematics and Science
Research and information: general
Soggetto non controllato Bayes factor
Bayesian mixed-effect model
boosting
classification
classification boundary
clustering analysis
convolutional neural networks
CpG sites
deep learning
DNA methylation
expectation-maximization algorithm
false discovery rate control
feed-forward neural networks
gaussian finite mixture model
GEE
gene expression
gene regulatory network
gene set enrichment analysis
integrative analysis
kernel method
lipid-environment interaction
longitudinal lipidomics study
machine learning
multiple cancer types
n/a
network substructure
nonparanormal graphical model
omics data
Ordinal responses
penalized variable selection
prognosis modeling
RNA-seq
uncertainty
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557545803321
Jiang Hui  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui