Corporate Bankruptcy Prediction : International Trends and Local Experience
| Corporate Bankruptcy Prediction : International Trends and Local Experience |
| Autore | Prusak Błażej |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
| Descrizione fisica | 1 online resource (202 p.) |
| Soggetto topico | Economics, Finance, Business and Management |
| Soggetto non controllato |
artificial neural networks
audit expectation gap bagging bankruptcy bankruptcy model bankruptcy prediction bankruptcy risk boosting chapter 11 citation mining classification company performance corporate bankruptcy corporate failure credit risk modelling Czech Republic decision trees default ensemble classifiers European large companies failure financial distress financial ratios forecasting forecasting methods fuzzy sets insolvency ISA 701 key audit matters literature review manufacturing insolvency materiality meta-analysis models predicting financial distress neural networks payment defaults phases of economic cycle Poland prediction Principal Component Analysis rating systems regression count scoring models stacking support vector machine tax arrears |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Corporate Bankruptcy Prediction |
| Record Nr. | UNINA-9910557527203321 |
Prusak Błażej
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Empirical Finance
| Empirical Finance |
| Autore | Hamori Shigeyuki |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 online resource (276 p.) |
| Soggetto non controllato |
algorithmic trading
ARDL asset pricing model asymmetric dependence ATR bagging bank credit bankruptcy prediction boosting causality-in-variance city banks cointegration convolutional neural networks copula credit risk cross-correlation function crude oil futures prices forecasting currency crisis data mining deep learning deep neural network dependence structure earnings management earnings manipulation earnings quality ensemble learning exchange rate exports financial and non-financial variables financial market stress flight to quality futures market global financial crisis gold return housing and stock markets housing loans housing price inertia initial public offering institutional investors' shareholdings IPO Japanese yen latency liquidity risk premium LSTM MACD machine learning market microstructure n/a natural gas neural network panel data model piecewise regression model predictive accuracy price discovery quantile regression random forest random forests real estate development loans robust regression short-term forecasting spark spread statistical arbitrage stop loss structural break SVM take profit text mining text similarity TVP-VAR model US dollar utility of international currency Vietnam volatility wavelet transform wholesale electricity |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910346675203321 |
Hamori Shigeyuki
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Statistical Methods for the Analysis of Genomic Data
| Statistical Methods for the Analysis of Genomic Data |
| Autore | Jiang Hui |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
| Descrizione fisica | 1 online resource (136 p.) |
| Soggetto topico |
Mathematics and Science
Research and information: general |
| Soggetto non controllato |
Bayes factor
Bayesian mixed-effect model boosting classification classification boundary clustering analysis convolutional neural networks CpG sites deep learning DNA methylation expectation-maximization algorithm false discovery rate control feed-forward neural networks gaussian finite mixture model GEE gene expression gene regulatory network gene set enrichment analysis integrative analysis kernel method lipid-environment interaction longitudinal lipidomics study machine learning multiple cancer types n/a network substructure nonparanormal graphical model omics data Ordinal responses penalized variable selection prognosis modeling RNA-seq uncertainty |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557545803321 |
Jiang Hui
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||