top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Corporate Bankruptcy Prediction : International Trends and Local Experience
Corporate Bankruptcy Prediction : International Trends and Local Experience
Autore Prusak Błażej
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (202 p.)
Soggetto topico Economics, finance, business & management
Soggetto non controllato ISA 701
audit expectation gap
key audit matters
materiality
Poland
corporate bankruptcy
forecasting
fuzzy sets
artificial neural networks
decision trees
bankruptcy prediction
tax arrears
payment defaults
financial ratios
failure
bankruptcy
chapter 11
regression count
meta-analysis
literature review
manufacturing insolvency
prediction
citation mining
classification
credit risk modelling
corporate failure
rating systems
ensemble classifiers
boosting
bagging
stacking
scoring models
insolvency
financial distress
default
forecasting methods
models predicting financial distress
phases of economic cycle
Czech Republic
European large companies
bankruptcy risk
company performance
Principal Component Analysis
neural networks
support vector machine
bankruptcy model
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Corporate Bankruptcy Prediction
Record Nr. UNINA-9910557527203321
Prusak Błażej  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Empirical Finance
Empirical Finance
Autore Hamori Shigeyuki
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (276 p.)
Soggetto non controllato short-term forecasting
wavelet transform
IPO
volatility
US dollar
institutional investors’ shareholdings
neural network
financial market stress
market microstructure
text similarity
TVP-VAR model
Japanese yen
convolutional neural networks
global financial crisis
deep neural network
cross-correlation function
boosting
causality-in-variance
flight to quality
bagging
earnings quality
algorithmic trading
stop loss
statistical arbitrage
ensemble learning
liquidity risk premium
gold return
futures market
take profit
currency crisis
spark spread
city banks
piecewise regression model
financial and non-financial variables
exports
data mining
latency
crude oil futures prices forecasting
random forests
wholesale electricity
SVM
random forest
bank credit
deep learning
Vietnam
inertia
MACD
initial public offering
text mining
bankruptcy prediction
exchange rate
asset pricing model
LSTM
panel data model
structural break
credit risk
housing and stock markets
copula
ARDL
earnings manipulation
machine learning
natural gas
housing price
asymmetric dependence
real estate development loans
earnings management
cointegration
predictive accuracy
robust regression
quantile regression
dependence structure
housing loans
price discovery
utility of international currency
ATR
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346675203321
Hamori Shigeyuki  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical Methods for the Analysis of Genomic Data
Statistical Methods for the Analysis of Genomic Data
Autore Jiang Hui
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (136 p.)
Soggetto topico Research & information: general
Mathematics & science
Soggetto non controllato multiple cancer types
integrative analysis
omics data
prognosis modeling
classification
gene set enrichment analysis
boosting
kernel method
Bayes factor
Bayesian mixed-effect model
CpG sites
DNA methylation
Ordinal responses
GEE
lipid-environment interaction
longitudinal lipidomics study
penalized variable selection
convolutional neural networks
deep learning
feed-forward neural networks
machine learning
gene regulatory network
nonparanormal graphical model
network substructure
false discovery rate control
gaussian finite mixture model
clustering analysis
uncertainty
expectation-maximization algorithm
classification boundary
gene expression
RNA-seq
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557545803321
Jiang Hui  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui