top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bayesian Design in Clinical Trials
Bayesian Design in Clinical Trials
Autore Berchialla Paola
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (190 p.)
Soggetto topico Humanities
Social interaction
Soggetto non controllato dose-escalation
combination study
modelling assumption
interaction
adaptive designs
adaptive randomization
Bayesian designs
clinical trials
predictive power
target allocation
Bayesian inference
highest posterior density intervals
normal approximation
predictive analysis
sample size determination
bayesian meta-analysis
clustering
binary data
priors
frequentist validation
Bayesian
rare disease
prior distribution
meta-analysis
sample size
bridging studies
distribution distance
oncology
phase I
dose-finding
dose–response
bayesian inference
prior elicitation
latent dirichlet allocation
clinical trial
power-prior
poor accrual
Bayesian trial
cisplatin
doxorubicin
oxaliplatin
dose escalation
PIPAC
peritoneal carcinomatosis
randomized controlled trial
causal inference
doubly robust estimation
propensity score
Bayesian monitoring
futility rules
interim analysis
posterior and predictive probabilities
stopping boundaries
Bayesian trial design
early phase dose finding
treatment combinations
optimal dose combination
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557608103321
Berchialla Paola  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Deep Learning in Medical Image Analysis
Deep Learning in Medical Image Analysis
Autore Zhang Yudong
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (458 p.)
Soggetto non controllato interpretable/explainable machine learning
image classification
image processing
machine learning models
white box
black box
cancer prediction
deep learning
multimodal learning
convolutional neural networks
autism
fMRI
texture analysis
melanoma
glcm matrix
machine learning
classifiers
explainability
explainable AI
XAI
medical imaging
diagnosis
ARMD
change detection
unsupervised learning
microwave breast imaging
image reconstruction
tumor detection
digital pathology
whole slide image processing
multiple instance learning
deep learning classification
HER2
medical images
transfer learning
optimizers
neo-adjuvant treatment
tumour cellularity
cancer
breast cancer
diagnostics
imaging
computation
artificial intelligence
3D segmentation
active surface
discriminant analysis
PET imaging
medical image analysis
brain tumor
cervical cancer
colon cancer
lung cancer
computer vision
musculoskeletal images
lung disease detection
taxonomy
convolutional neural network
CycleGAN
data augmentation
dermoscopic images
domain transfer
macroscopic images
skin lesion segmentation
infection detection
COVID-19
X-ray images
bayesian inference
shifted-scaled dirichlet distribution
MCMC
gibbs sampling
object detection
surgical tools
open surgery
egocentric camera
computers in medicine
segmentation
MRI
ECG signal detection
portable monitoring devices
1D-convolutional neural network
medical image segmentation
domain adaptation
meta-learning
U-Net
computed tomography (CT)
magnetic resonance imaging (MRI)
low-dose
sparse-angle
quantitative comparison
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557435103321
Zhang Yudong  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Markov and Semi-markov Chains, Processes, Systems and Emerging Related Fields
Markov and Semi-markov Chains, Processes, Systems and Emerging Related Fields
Autore Vassiliou Panagiotis-Christos
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (294 p.)
Soggetto topico Research & information: general
Mathematics & science
Soggetto non controllato Monte Carlo
MCMC
Markov chains
computational statistics
bayesian inference
Non-Homogeneous Markov Systems
Markov Set Systems
limiting set
tail expectation
asymptotic bound
quasi-asymptotic independence
heavy-tailed distribution
dominated variation
copula
branching process
migration
continuous time
generating function
period-life
reliability
redundant systems
preventive maintenance
multiple vacations
process mining
process modelling
phase-type models
process target compliance
particle filter
missing data
single imputation
impoverishment
Markov Systems
open population Markov chain models
Semi-Markov processes
controllable Markov jump processes
compound Poisson processes
diffusion limits
stochastic control problem with incomplete information
novel queuing models in applications
semi-Markov model
Markov model
hybrid semi-Markov model
manpower planning
semi-Markov modeling
occupancy
first passage time
duration
non-homogeneity
DNA sequences
state space model
Kalman filter
constrained optimization
two-sided components
basketball
Markov chain
second order
off-ball screens
performance
semi-Markov
transient analysis
asymptotic analysis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557364203321
Vassiliou Panagiotis-Christos  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui