top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Air Pollution Modelling: Local-, Regional-, and Global-Scale Application
Air Pollution Modelling: Local-, Regional-, and Global-Scale Application
Autore Itahashi Syuichi
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (174 p.)
Soggetto topico Environmental science, engineering & technology
Soggetto non controllato Air quality
air quality modeling
atmospheric reanalysis
biomass burning
CFD
chaotic advection
chemical reaction model
CMAQ
Community Multiscale Air Quality (CMAQ)
East Asia
eastern China
education
emissions dispersion
environmental assessment
escape rate
IMPROVE
large eddy simulation
large-scale atmospheric advection
mesoscale models
model inter-comparison
n/a
neural network algorithm
Nitrate aerosol
open burning
PM10
PM2.5
PM2.5 components
radiation
reactive pollutants
RePLaT-Chaos
RxCADRE
secondary particles
smoke modeling
SO42-
stabilized Criegee intermediates (SCI)
Street canyon
stretching rate
sugarcane crops
three-dimensional chemical transport model
Tokyo
urban canyon
Urban pollution
urban scale
visibility
wildfire plume rise
WRF-Chem
WRF-SFIRE
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Air Pollution Modelling
Record Nr. UNINA-9910557734303321
Itahashi Syuichi  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management
Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management
Autore Kisi Ozgur
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (238 p.)
Soggetto topico Research & information: general
Soggetto non controllato additive regression
artificial intelligence
artificial neural network
atmospheric reanalysis
bagging
Bayesian model averaging
big data
calibration
CWP
dagging
Daymet V3
EEFlux
ensemble modeling
extension principle
flood routing
fuzzy sets and systems
Google Earth Engine
Govindpur
groundwater
groundwater level prediction
hydroinformatics
hydrologic model
improved extreme learning machine (IELM)
irrigation performance
Kernel extreme learning machines
M5 model tree
machine learning
multivariate adaptive regression spline
Muskingum method
n/a
NDVI
neural network
nitrogen compound
nitrogen prediction
non-linear modeling
PACF
particle swarm optimization
prediction intervals
prediction models
principal component analysis
random subspace
rotation forest
satellite precipitation
sensitivity analysis
shortwave radiation flux density
South Korea
spatiotemporal variation
streamflow forecasting
streamflow simulation
support vector machine
sustainability
sustainable development
SVM-LF
SVM-RF
uncertainty
uncertainty analysis
ungauged basin
WANN
water conservation
water resources
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557448103321
Kisi Ozgur  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui