top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
CFD Based Researches and Applications for Fluid Machinery and Fluid Device
CFD Based Researches and Applications for Fluid Machinery and Fluid Device
Autore Kim Jin-Hyuk
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (539 p.)
Soggetto topico Technology: general issues
Soggetto non controllato adiabatic film-cooling effectiveness
aerodynamic
aerodynamic performance
artificial neural networks (ANN)
axial compressor
axial fan
axial-flow pump
blade outlet angle
blowing ratio
cascade
cavitating flow and instabilities
cavitation performance
cell-set model
centrifugal fan
centrifugal pump
CFD
characteristic implicit method
clearance
computational fluid dynamics
computational fluid dynamics (CFD)
Computational Fluid Dynamics (CFD)
deflection angle of the flap (αF)
design
design factors
diffuser
double suction
double-suction impeller
dynamic characteristics
dynamic stress
energy characteristics
energy dissipation
energy recovery
entropy production
extrusion fault
figure of merit
film cooling
fish farm
fixed flow passage
flow field
flow function
flow similarity
flow uniformity
fluent
Francis turbine
friction factor
frozen rotor
full factorial methods
gas turbine
groove
heat transfer performance
hover
hydraulic losses
impeller
incidence angle
inducer
inducer-type guide vane
internal flow
inverse design method
jet
laminar flow
large eddy simulation
lateral cavity
leakage
leakage rate
LES
LHS
liquid film
machine learning
matching optimization
mechanical seal
microchannel heat sink
mixing
multi-condition optimization
multi-objective optimization
multistage centrifugal pump
n/a
negative pressure
net positive suction head (NPSH)
noise
noise characteristics
numerical simulation
Nusselt number
octorotor SUAV
open-design
optimization
optimization control
optimum model
parameterization
partial similarity principle
performance test
pitched blade turbine
plane cascade design
power coefficient
power consumption
pressure fluctuation
pressure ratio
proper orthogonal decomposition
PSO-MVFSA
pump as turbine
pump-turbine
RANS
reactor coolant pump (RCP)
relative roughness
reversible
Reynolds-averaged Navier-Stokes (RANS)
Reynolds-averaged Navier-Stokes equations
ribs
root clearance radius
rotor spacing
sealing performance
shape optimization
Sirocco fan
small hydropower
solar air heater
sound pressure
spiral flow
stability improvement
start-up process
startup period
step casing
stepped labyrinth seal
the mixed free-surface-pressurized flow
thrust
thrust coefficient
tip clearance
trailing edge flap (TEF)
trailing edge flap with Micro-Tab
transient characteristics
triple holes
tubular turbine
twin-volute
two-vane pump
UAV
URANS
varying pitch
vent holes
volute tongue radius
vortex
vortex generator (VG)
vortex pump
vortices distribution
waviness
wavy microchannel
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557785803321
Kim Jin-Hyuk  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Natural Degradation: Polymer Degradation under Different Conditions
Natural Degradation: Polymer Degradation under Different Conditions
Autore Vetcher Alexandre
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (244 p.)
Soggetto topico Chemistry
Research & information: general
Soggetto non controllato agriculture
anaerobic digestion
antimicrobial activity
applications
arterial hypertension
artificial neural networks (ANN)
biodegradable
biodegradable polyester
biodegradation
biodegradation rates
biopolymeric nanoparticles
biosorbent
biostimulant
box plot
Box-Behnken design
chitosan
circular testing
closed-loop
composite material
crosslinking
deep eutectic solvents
DSC
electrospinning
enzymatic hydrolysis
epoxy resin
Fe(III)
Fick model deviation
gelatin methacryloyl
hydrogel
hydrolytic degradation
hygrothermal ageing
kinetic model
kinetics
magnetite
mechanical recycling
mechanochemical method
medicine
metalloporphyrin complexes
microwave depolymerization
n/a
nanoparticles
orthogonal test
osteoinduction
PCA
photocatalytic degradation
poly(3-hydroxybutyrate)
polyethylene terephthalate
polymer degradation
polyolefins
polyvinyl chloride (PVC)
pyrolysis
recycled polyurethane foam
rhomboid fossa
SEM
silica
Sn(IV)
spin probe EPR method
statistical analysis
Sturm's method
synthesis
tannic acid
tensile strength
tetraphenylporphyrin
thermal conductivity
thermal oxidation
thermodynamics
thermogravimetric analysis (TGA)
titania
titanium silicon oxide
ultrafine electrospun fibers
vertebral cartilage
water diffusion
X-ray diffraction
ISBN 3-0365-5134-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Natural Degradation
Record Nr. UNINA-9910619470403321
Vetcher Alexandre  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recent Advances and Applications of Machine Learning in Metal Forming Processes
Recent Advances and Applications of Machine Learning in Metal Forming Processes
Autore Prates Pedro
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (210 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Mining technology & engineering
Soggetto non controllato sheet metal forming
uncertainty analysis
metamodeling
machine learning
hot rolling strip
edge defects
intelligent recognition
convolutional neural networks
deep-drawing
kriging metamodeling
multi-objective optimization
FE (Finite Element) AutoForm robust analysis
defect prediction
mechanical properties prediction
high-dimensional data
feature selection
maximum information coefficient
complex network clustering
ring rolling
process energy estimation
metal forming
thermo-mechanical FEM analysis
artificial neural network
aluminum alloy
mechanical property
UTS
topological optimization
artificial neural networks (ANN)
machine learning (ML)
press-brake bending
air-bending
three-point bending test
sheet metal
buckling instability
oil canning
artificial intelligence
convolution neural network
hot rolled strip steel
defect classification
generative adversarial network
attention mechanism
deep learning
mechanical constitutive model
finite element analysis
plasticity
parameter identification
full-field measurements
ISBN 3-0365-5772-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910637782503321
Prates Pedro  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui