A course on surgery theory / / Stanley Chang, Shmuel Weinberger [[electronic resource]]
| A course on surgery theory / / Stanley Chang, Shmuel Weinberger [[electronic resource]] |
| Autore | Chang Stanley |
| Pubbl/distr/stampa | Princeton : , : Princeton University Press, , 2021 |
| Descrizione fisica | 1 online resource (472 p.) : 14 b/w illus |
| Disciplina | 605 |
| Collana |
Annals of mathematics studies
Princeton scholarship online |
| Soggetto topico | Surgery (Topology) |
| Soggetto non controllato |
Borel conjecture
Chapman-Ferry Farrell-Hsiang Kirby-Siebenmann L-theory Novikov conjecture PL category PL topology algebraic topology assembly map assembly perspective on surgery bounded topology classification of manifolds controlled topology differential topology fibration flat manifolds homology manifolds homology surgery homotopy invariant homotopy theory index theorem induction theory manifold theory quadratic form theory quadratic form representation theory smooth category splitting theorems stratified spaces surgery exact sequence surgery obstruction group tangent bundle topological category topological surgery theory topology |
| ISBN | 0-691-20035-1 |
| Classificazione | 415.7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- List of Figures -- Preface -- Introduction -- 1 The characterization of homotopy types -- 2 Some calculations of L-groups -- 3 Classical surgery theory -- 4 Topological surgery and surgery spaces -- 5 Applications of the assembly map -- 6 Beyond characteristic classes -- 7 Flat and almost flat manifolds -- 8 Other surgery theories -- Appendix A: Some background in algebraic topology -- Appendix B: Geometric preliminaries -- List of Symbols -- Bibliography -- Index |
| Record Nr. | UNINA-9910554281203321 |
Chang Stanley
|
||
| Princeton : , : Princeton University Press, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Physics of Ionic Conduction in Narrow Biological and Artificial Channels
| Physics of Ionic Conduction in Narrow Biological and Artificial Channels |
| Autore | McClintock P. V. E |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (306 p.) |
| Soggetto topico |
Research and information: general
Technology: general issues |
| Soggetto non controllato |
2D materials
algebraic topology angstrom slits Bikerman model bioelectricity Boltzmann and Fermi distributions classical density functional theory committor probabilities computational electrophysiology computer simulations crown ether current-voltage dependence dielectric constant double-layer capacitance effects of diffusion coefficients electric double layer electrochemistry electrodiffusion model electrokinetics entropy gating current graphene Helmholtz free energy ion activity ion channel ion channels ion transport ionic Coulomb blockade ionic transport linear response maxwell equations modified Langevin Poisson-Boltzmann model molecular dynamics molecular mean-field theory Monte Carlo n/a NaChBac nanofluidics nanopore nanopores nanotubes Nernst-Planck non-Hermitian Hamiltonians orientational ordering of water dipoles patch-clamp permanent charge permeability Poisson-Bikerman Poisson-Boltzmann Poisson-Boltzmann model Poisson-Fermi Poisson-Nernst-Planck polarization protein dynamics reduced models reversal potential selectivity semiclassical methods specific ion size statistical mechanics statistical theory steric and correlation effects steric effect stochastic simulations thermodynamics |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557604303321 |
McClintock P. V. E
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||