top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Health and Public Health Applications for Decision Support Using Machine Learning
Health and Public Health Applications for Decision Support Using Machine Learning
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2023
Descrizione fisica 1 online resource (214 p.)
Soggetto non controllato action units
adult-onset dementia
Alzheimer's disease
artificial intelligence
artificial neural network
atherosclerosis
audio visual
blood glucose
Cardiac health
ChemProt
colonies
comparison between manual and automated image segmentation
computerized diagnostic systems
convolutional neural network
COVID-19
COVID-19 detection
COVID-19 severity assessment
CPR (chemical-protein relation)
CVD classification
data selection
DDI (drug-drug interaction)
deep learning
deep neural network
diabetes
discrimination
Doppler ultrasound
ECG
emotion
ensemble learning
gait
GAT (graph-attention network)
group-based trajectory modeling
hemodynamic modeling
image processing
infected lung segmentation
internal carotid artery
largest Lyapunov exponent (LyE)
machine learning
machine-learning models
magnetic resonance imaging
Measurement uncertainty
Monte Carlo method
movement synergy
n/a
neural networks
neuromuscular control
overground walking
petri-plates
pretrained model
principal component analysis (PCA)
quantification of lung disease severity
relation extraction
risk assessment tool
RNN-LSTM
screening strategy
self-attention
signal processing
speech
stress
stroke
subclinical renal damage
T5 (text-to-text transfer transformer)
time-series forecasting
transfer learning
transformer
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910743269303321
MDPI - Multidisciplinary Digital Publishing Institute, 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent Sensors for Human Motion Analysis
Intelligent Sensors for Human Motion Analysis
Autore Krzeszowski Tomasz
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (382 p.)
Soggetto topico History of engineering and technology
Technology: general issues
Soggetto non controllato 3D human mesh reconstruction
3D human pose estimation
3D multi-person pose estimation
absolute poses
action units
aggregation function
anomaly detection
artifact classification
artifact detection
artificial intelligence
assessment
Azure Kinect
balance
Berg Balance Scale
BILSTM
biometrics
camera-centric coordinates
computer vision
convolutional neural networks
COVID-19
cyber-physical systems
data augmentation
deep learning
deep neural network
deep-learning
development
diagnosis
elderly
EMG
F-Formation
facial expression recognition
facial landmarks
fall risk detection
features fusion
features selection
FFNN
FMCW
fuzzy inference
gait analysis
gait parameters
gait recognition
gap filling
generalization
graph convolutional networks
grey wolf optimization
GRU
human action recognition
human motion analysis
human motion modelling
human tracking
Kinect v2
kinematics
knowledge measure
LSTM
machine learning
markerless
markerless motion capture
MFCC
modular sensing unit
motion capture
movement tracking
n/a
neural networks
optical sensing principle
particle swarm optimization
pattern recognition
plantar pressure measurement
pose estimation
posture detection
precedence indicator
recognition
reconstruction
regularized discriminant analysis
RGB-D sensors
robot
rule induction
skeletal data
socially occupied space
telemedicine
time series classification
vital sign
whale optimization algorithm
XGBoost
Zed 2i
ISBN 3-0365-5074-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619469003321
Krzeszowski Tomasz  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui