top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Intelligence in Oral Health
Artificial Intelligence in Oral Health
Autore Lee Jae-Hong
Pubbl/distr/stampa Basel, : MDPI Books, 2022
Descrizione fisica 1 electronic resource (190 p.)
Soggetto topico Medicine
Soggetto non controllato machine learning
artificial intelligence
malocclusion
diagnostic imaging
active learning
maxillary sinusitis
convolutional neural network
deep learning
segmentation
oral microbiota
LEfSe
PCoA
alloprevotella
prevotella
core microbiota
artificial neural networks
oral cancer diagnosis
oral cancer prediction
pit and fissure sealants
caries assessment
visual examination
clinical evaluation
convolutional neural networks
transfer learning
deep learning network
YOLOv4
mandibular third molar
inferior alveolar nerve
contact relationship
panoramic radiograph
deep learning methods
caries diagnosis
dental panoramic images
radiography
Fourier transform infrared spectroscopy
FTIR imaging
spectral biomarker
multivariate analysis
discriminant model
oral squamous cell carcinoma
oral epithelial dysplasia
oral potentially malignant disorder
risk stratification
early oral cancer detection
dentigerous cysts
histopathology images
image classification
odontogenic keratocysts
radicular cysts
AI
screening
diagnosis
dentistry
ultrasonography
tongue
algorithm
dysphagia
impacted
tooth
detection
neural networks
proximal caries
training strategy
small dataset
periapical radiograph
X-ray
tooth extraction
oroantral fistula
operative planning
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910595066803321
Lee Jae-Hong  
Basel, : MDPI Books, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Information Theory and Its Application in Machine Condition Monitoring
Information Theory and Its Application in Machine Condition Monitoring
Autore Li Yongbo
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (194 p.)
Soggetto topico History of engineering and technology
Technology: general issues
Soggetto non controllato adaptive particle swarm optimization (APSO)
anomaly detection
bearing
combined fault diagnosis
cubic spline interpolation envelope
D-S evidence theory
deep learning
domain adaptation
empirical wavelet transform
fault detection
fault diagnosis
gearbox
grey wolf optimizer
Huffman-multi-scale entropy (HMSE)
improved artificial bee colony algorithm
information fusion
JS divergence
kernel density estimation
low pass FIR filter
LSSVM
machine vision
misalignment
MobileNetV3
multi-source heterogeneous fusion
n/a
optimal bandwidth
partial transfer
peak extraction
rail surface defect detection
rotating machinery
satellite momentum wheel
signal interception
subdomain
support vector machine
support vector machine (SVM)
transfer learning
wind turbines
YOLOv4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566460803321
Li Yongbo  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui