Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians / Bernard Helffer, Francis Nier |
Autore | Helffer, Bernard |
Pubbl/distr/stampa | Berlin, : Springer, 2005 |
Descrizione fisica | X, 209 p. ; 24 cm |
Altri autori (Persone) | Nier, Francis |
Soggetto topico |
82C31 - Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics [MSC 2020]
81Q10 - Selfadjoint operator theory in quantum theory, including spectral analysis [MSC 2020] 35H10 - Hypoelliptic equations [MSC 2020] 35H20 - Subelliptic equations [MSC 2020] 35P05 - General topics in linear spectral theory for PDEs [MSC 2020] 35P15 - Estimation of eigenvalues in context of PDEs [MSC 2020] 58J50 - Spectral problems; spectral geometry; scattering theory on manifolds [MSC 2020] 81Q20 - Semiclassical techniques including WKB and Maslov methods applied to problems in quantum theory [MSC 2020] 82C05 - Classical dynamic and nonequilibrium statistical mechanics (general) [MSC 2020] 58J10 - Differential complexes ; elliptic complexes [MSC 2020] 82C40 - Kinetic theory of gases in time-dependent statistical mechanics [MSC 2020] 58K65 - Topological invariants on manifolds [MSC 2020] |
Soggetto non controllato |
Calculus
Compactness Compactness criteria Eigenvalues Fokker-Planck operators Hypoellipticity Maximum Partial differential equations Return to equilibrium Witten Laplacians |
ISBN | 978-35-402-4200-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0060335 |
Helffer, Bernard
![]() |
||
Berlin, : Springer, 2005 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians / Bernard Helffer, Francis Nier |
Autore | Helffer, Bernard |
Pubbl/distr/stampa | Berlin, : Springer, 2005 |
Descrizione fisica | X, 209 p. ; 24 cm |
Altri autori (Persone) | Nier, Francis |
Soggetto topico |
35H10 - Hypoelliptic equations [MSC 2020]
35H20 - Subelliptic equations [MSC 2020] 35P05 - General topics in linear spectral theory for PDEs [MSC 2020] 35P15 - Estimation of eigenvalues in context of PDEs [MSC 2020] 58J10 - Differential complexes ; elliptic complexes [MSC 2020] 58J50 - Spectral problems; spectral geometry; scattering theory on manifolds [MSC 2020] 58K65 - Topological invariants on manifolds [MSC 2020] 81Q10 - Selfadjoint operator theory in quantum theory, including spectral analysis [MSC 2020] 81Q20 - Semiclassical techniques including WKB and Maslov methods applied to problems in quantum theory [MSC 2020] 82C05 - Classical dynamic and nonequilibrium statistical mechanics (general) [MSC 2020] 82C31 - Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics [MSC 2020] 82C40 - Kinetic theory of gases in time-dependent statistical mechanics [MSC 2020] |
Soggetto non controllato |
Calculus
Compactness Compactness criteria Eigenvalues Fokker-Planck operators Hypoellipticity Maximum Partial differential equations Return to equilibrium Witten Laplacians |
ISBN | 978-35-402-4200-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00060335 |
Helffer, Bernard
![]() |
||
Berlin, : Springer, 2005 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|