Vai al contenuto principale della pagina
Autore: | Speer Eugene R. |
Titolo: | Generalized Feynman Amplitudes. (AM-62), Volume 62 / / Eugene R. Speer |
Pubblicazione: | Princeton, NJ : , : Princeton University Press, , [2016] |
©1969 | |
Descrizione fisica: | 1 online resource (233 pages) |
Disciplina: | 530.14/3 |
Soggetto topico: | Mathematical physics |
Quantum field theory | |
Soggetto non controllato: | Addition |
Adjoint | |
Amplitude | |
Analytic continuation | |
Analytic function | |
Antiparticle | |
C-number | |
Calculation | |
Change of variables | |
Classical electromagnetism | |
Coefficient | |
Commutative property | |
Compact space | |
Complex analysis | |
Complex number | |
Connectivity (graph theory) | |
Constant term | |
Convolution | |
Derivative | |
Diagram (category theory) | |
Differentiable function | |
Distribution (mathematics) | |
Equation | |
Estimation | |
Explicit formulae (L-function) | |
Fermion | |
Fock space | |
Formal power series | |
Fourier transform | |
Free field | |
Gauge theory | |
Graph theory | |
Hilbert space | |
Incidence matrix | |
Interaction picture | |
Invertible matrix | |
Irreducibility (mathematics) | |
Isolated singularity | |
Lagrangian (field theory) | |
Laurent series | |
Mathematical induction | |
Mathematics | |
Momentum | |
Monomial | |
Multiple integral | |
National Science Foundation | |
Notation | |
Parameter | |
Path integral formulation | |
Permutation | |
Polynomial | |
Power series | |
Probability | |
Propagator | |
Quadratic form | |
Quantity | |
Quantum field theory | |
Remainder | |
Renormalization | |
Requirement | |
S-matrix | |
Scattering amplitude | |
Scientific notation | |
Second quantization | |
Several complex variables | |
Simple extension | |
Special case | |
Subset | |
Subtraction | |
Suggestion | |
Summation | |
Taylor series | |
Tensor product | |
Theorem | |
Theory | |
Topological space | |
Translational symmetry | |
Tree (data structure) | |
Uniform convergence | |
Vacuum expectation value | |
Vacuum state | |
Vacuum | |
Variable (mathematics) | |
Vector field | |
Vector potential | |
Wick's theorem | |
Z0 | |
Nota di bibliografia: | Includes bibliographical references. |
Nota di contenuto: | Frontmatter -- Acknowledgements -- Abstract -- tables of contents -- Introductions -- CHAPTER I. Renormalization in Lagrangian Field Theory -- CHAPTER II. Definition of Generalized Amplitudes -- CHAPTER III. Analytic Renormalization -- CHAPTER IV. Summation of Feynman Amplitudes -- CONCLUSION -- APPENDIX A. Graphs -- APPENDIX B. Distributions -- APPENDIX C. The Free Field -- BIBLIOGRAPHY |
Sommario/riassunto: | This book contains a valuable discussion of renormalization through the addition of counterterms to the Lagrangian, giving the first complete proof of the cancellation of all divergences in an arbitrary interaction. The author also introduces a new method of renormalizing an arbitrary Feynman amplitude, a method that is simpler than previous approaches and can be used to study the renormalized perturbation series in quantum field theory. |
Titolo autorizzato: | Generalized Feynman Amplitudes. (AM-62), Volume 62 |
ISBN: | 1-4008-8186-2 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910154752403321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |