Evolution equations of von Karman type / Pascal Cherrier, Albert Milani
| Evolution equations of von Karman type / Pascal Cherrier, Albert Milani |
| Autore | Cherrier, Pascal |
| Pubbl/distr/stampa | [Cham], : Springer, : Unione matematica italiana, 2015 |
| Descrizione fisica | XVI, 140 p. ; 24 cm |
| Soggetto topico |
58E05 - Abstract critical point theory (Morse theory, Lyusternik-Shnirel'man theory, etc.) in infinite-dimensional spaces [MSC 2020]
53Zxx - Applications of differential geometry to sciences and engineering [MSC 2020] 53D05 - Symplectic manifolds, general [MSC 2020] 35F21 - Hamilton-Jacobi equations [MSC 2020] 53D12 - Lagrangian submanifolds; Maslov index [MSC 2020] 37J06 - General theory of finite-dimensional Hamiltonian and Lagrangian systems, Hamiltonian and Lagrangian structures, symmetries, invariants [MSC 2020] |
| Soggetto non controllato |
Local and global solutions
Nonlinear evolution equations Partial differential equations Von Karman equations Weak and strong solutions |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0113685 |
Cherrier, Pascal
|
||
| [Cham], : Springer, : Unione matematica italiana, 2015 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Evolution equations of von Karman type / Pascal Cherrier, Albert Milani
| Evolution equations of von Karman type / Pascal Cherrier, Albert Milani |
| Autore | Cherrier, Pascal |
| Pubbl/distr/stampa | [Cham], : Springer, : Unione matematica italiana, 2015 |
| Descrizione fisica | XVI, 140 p. ; 24 cm |
| Soggetto topico |
35F21 - Hamilton-Jacobi equations [MSC 2020]
37J06 - General theory of finite-dimensional Hamiltonian and Lagrangian systems, Hamiltonian and Lagrangian structures, symmetries, invariants [MSC 2020] 53D05 - Symplectic manifolds, general [MSC 2020] 53D12 - Lagrangian submanifolds; Maslov index [MSC 2020] 53Zxx - Applications of differential geometry to sciences and engineering [MSC 2020] 58E05 - Abstract critical point theory (Morse theory, Lyusternik-Shnirel'man theory, etc.) in infinite-dimensional spaces [MSC 2020] |
| Soggetto non controllato |
Local and global solutions
Nonlinear evolution equations Partial Differential Equations Von Karman equations Weak and strong solutions |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00113685 |
Cherrier, Pascal
|
||
| [Cham], : Springer, : Unione matematica italiana, 2015 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Stochastic partial differential equations: an introduction / Wei Liu, Michael Röckner
| Stochastic partial differential equations: an introduction / Wei Liu, Michael Röckner |
| Autore | Liu, Wei |
| Pubbl/distr/stampa | [Cham], : Springer, 2015 |
| Descrizione fisica | VI, 266 p. : ill. ; 24 cm |
| Altri autori (Persone) | Röckner, Michael |
| Soggetto topico |
47-XX - Operator theory [MSC 2020]
47J35 - Nonlinear evolution equations [MSC 2020] 35-XX - Partial differential equations [MSC 2020] 60J25 - Continuous-time Markov processes on general state spaces [MSC 2020] 60H05 - Stochastic integrals [MSC 2020] 60-XX - Probability theory and stochastic processes [MSC 2020] 60H10 - Stochastic ordinary differential equations [MSC 2020] 34-XX - Ordinary differential equations [MSC 2020] 60J60 - Diffusion processes [MSC 2020] 60H15 - Stochastic partial differential equations (aspects of stochastic analysis) [MSC 2020] 35Q35 - PDEs in connection with fluid mechanics [MSC 2020] 34G20 - Nonlinear differential equations in abstract spaces [MSC 2020] 34Fxx - Ordinary differential equations and systems with randomness [MSC 2020] 35K58 - Semilinear parabolic equations [MSC 2020] 35K59 - Quasilinear parabolic equations [MSC 2020] |
| Soggetto non controllato |
Explosive Solutions
Gelfand Triples Generalized Coercivity Girsanov Theorem on Hilbert Invariant measures Itô-Formula Locally Monotone Coefficients Markov property Ordinary differential equations Partial differential equations Stochastic 2D and 3D Navier-Stokes Equation Stochastic Cahn-Hilliard Equations Stochastic Evolution Equations Stochastic Partial Differential Equations Stochastic Porous Media Equations Stochastic Surface Growth Models Stochastic integration in Hilbert spaces Stochastic p-Laplace Equations Variational approach Weak and strong solutions Yamada-Watanabe Theorem in Infinite Dimensions |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0113731 |
Liu, Wei
|
||
| [Cham], : Springer, 2015 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Stochastic partial differential equations: an introduction / Wei Liu, Michael Röckner
| Stochastic partial differential equations: an introduction / Wei Liu, Michael Röckner |
| Autore | Liu, Wei |
| Pubbl/distr/stampa | [Cham], : Springer, 2015 |
| Descrizione fisica | VI, 266 p. : ill. ; 24 cm |
| Altri autori (Persone) | Röckner, Michael |
| Soggetto topico |
34-XX - Ordinary differential equations [MSC 2020]
34Fxx - Ordinary differential equations and systems with randomness [MSC 2020] 34G20 - Nonlinear differential equations in abstract spaces [MSC 2020] 35-XX - Partial differential equations [MSC 2020] 35K58 - Semilinear parabolic equations [MSC 2020] 35K59 - Quasilinear parabolic equations [MSC 2020] 35Q35 - PDEs in connection with fluid mechanics [MSC 2020] 47-XX - Operator theory [MSC 2020] 47J35 - Nonlinear evolution equations [MSC 2020] 60-XX - Probability theory and stochastic processes [MSC 2020] 60H05 - Stochastic integrals [MSC 2020] 60H10 - Stochastic ordinary differential equations [MSC 2020] 60H15 - Stochastic partial differential equations (aspects of stochastic analysis) [MSC 2020] 60J25 - Continuous-time Markov processes on general state spaces [MSC 2020] 60J60 - Diffusion processes [MSC 2020] |
| Soggetto non controllato |
Explosive Solutions
Gelfand Triples Generalized Coercivity Girsanov Theorem on Hilbert Invariant measures Itô-Formula Locally Monotone Coefficients Markov property Ordinary Differential Equations Partial Differential Equations Stochastic 2D and 3D Navier-Stokes Equation Stochastic Cahn-Hilliard Equations Stochastic Evolution Equations Stochastic Partial Differential Equations Stochastic Porous Media Equations Stochastic Surface Growth Models Stochastic integration in Hilbert spaces Stochastic p-Laplace Equations Variational approach Weak and strong solutions Yamada-Watanabe Theorem in Infinite Dimensions |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00113731 |
Liu, Wei
|
||
| [Cham], : Springer, 2015 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||