top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Evolution equations of von Karman type / Pascal Cherrier, Albert Milani
Evolution equations of von Karman type / Pascal Cherrier, Albert Milani
Autore Cherrier, Pascal
Pubbl/distr/stampa [Cham], : Springer, : Unione matematica italiana, 2015
Descrizione fisica XVI, 140 p. ; 24 cm
Soggetto topico 58E05 - Abstract critical point theory (Morse theory, Lyusternik-Shnirel'man theory, etc.) in infinite-dimensional spaces [MSC 2020]
53Zxx - Applications of differential geometry to sciences and engineering [MSC 2020]
53D05 - Symplectic manifolds, general [MSC 2020]
35F21 - Hamilton-Jacobi equations [MSC 2020]
53D12 - Lagrangian submanifolds; Maslov index [MSC 2020]
37J06 - General theory of finite-dimensional Hamiltonian and Lagrangian systems, Hamiltonian and Lagrangian structures, symmetries, invariants [MSC 2020]
Soggetto non controllato Local and global solutions
Nonlinear evolution equations
Partial differential equations
Von Karman equations
Weak and strong solutions
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0113685
Cherrier, Pascal  
[Cham], : Springer, : Unione matematica italiana, 2015
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Evolution equations of von Karman type / Pascal Cherrier, Albert Milani
Evolution equations of von Karman type / Pascal Cherrier, Albert Milani
Autore Cherrier, Pascal
Pubbl/distr/stampa [Cham], : Springer, : Unione matematica italiana, 2015
Descrizione fisica XVI, 140 p. ; 24 cm
Soggetto topico 35F21 - Hamilton-Jacobi equations [MSC 2020]
37J06 - General theory of finite-dimensional Hamiltonian and Lagrangian systems, Hamiltonian and Lagrangian structures, symmetries, invariants [MSC 2020]
53D05 - Symplectic manifolds, general [MSC 2020]
53D12 - Lagrangian submanifolds; Maslov index [MSC 2020]
53Zxx - Applications of differential geometry to sciences and engineering [MSC 2020]
58E05 - Abstract critical point theory (Morse theory, Lyusternik-Shnirel'man theory, etc.) in infinite-dimensional spaces [MSC 2020]
Soggetto non controllato Local and global solutions
Nonlinear evolution equations
Partial differential equations
Von Karman equations
Weak and strong solutions
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00113685
Cherrier, Pascal  
[Cham], : Springer, : Unione matematica italiana, 2015
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Stochastic partial differential equations: an introduction / Wei Liu, Michael Röckner
Stochastic partial differential equations: an introduction / Wei Liu, Michael Röckner
Autore Liu, Wei
Pubbl/distr/stampa [Cham], : Springer, 2015
Descrizione fisica VI, 266 p. : ill. ; 24 cm
Altri autori (Persone) Röckner, Michael
Soggetto topico 47-XX - Operator theory [MSC 2020]
47J35 - Nonlinear evolution equations [MSC 2020]
35-XX - Partial differential equations [MSC 2020]
60J25 - Continuous-time Markov processes on general state spaces [MSC 2020]
60H05 - Stochastic integrals [MSC 2020]
60-XX - Probability theory and stochastic processes [MSC 2020]
60H10 - Stochastic ordinary differential equations [MSC 2020]
34-XX - Ordinary differential equations [MSC 2020]
60J60 - Diffusion processes [MSC 2020]
60H15 - Stochastic partial differential equations (aspects of stochastic analysis) [MSC 2020]
35Q35 - PDEs in connection with fluid mechanics [MSC 2020]
34G20 - Nonlinear differential equations in abstract spaces [MSC 2020]
34Fxx - Ordinary differential equations and systems with randomness [MSC 2020]
35K58 - Semilinear parabolic equations [MSC 2020]
35K59 - Quasilinear parabolic equations [MSC 2020]
Soggetto non controllato Explosive Solutions
Gelfand Triples
Generalized Coercivity
Girsanov Theorem on Hilbert
Invariant measures
Itô-Formula
Locally Monotone Coefficients
Markov property
Ordinary differential equations
Partial differential equations
Stochastic 2D and 3D Navier-Stokes Equation
Stochastic Cahn-Hilliard Equations
Stochastic Evolution Equations
Stochastic Partial Differential Equations
Stochastic Porous Media Equations
Stochastic Surface Growth Models
Stochastic integration in Hilbert spaces
Stochastic p-Laplace Equations
Variational approach
Weak and strong solutions
Yamada-Watanabe Theorem in Infinite Dimensions
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0113731
Liu, Wei  
[Cham], : Springer, 2015
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Stochastic partial differential equations: an introduction / Wei Liu, Michael Röckner
Stochastic partial differential equations: an introduction / Wei Liu, Michael Röckner
Autore Liu, Wei
Pubbl/distr/stampa [Cham], : Springer, 2015
Descrizione fisica VI, 266 p. : ill. ; 24 cm
Altri autori (Persone) Röckner, Michael
Soggetto topico 34-XX - Ordinary differential equations [MSC 2020]
34Fxx - Ordinary differential equations and systems with randomness [MSC 2020]
34G20 - Nonlinear differential equations in abstract spaces [MSC 2020]
35-XX - Partial differential equations [MSC 2020]
35K58 - Semilinear parabolic equations [MSC 2020]
35K59 - Quasilinear parabolic equations [MSC 2020]
35Q35 - PDEs in connection with fluid mechanics [MSC 2020]
47-XX - Operator theory [MSC 2020]
47J35 - Nonlinear evolution equations [MSC 2020]
60-XX - Probability theory and stochastic processes [MSC 2020]
60H05 - Stochastic integrals [MSC 2020]
60H10 - Stochastic ordinary differential equations [MSC 2020]
60H15 - Stochastic partial differential equations (aspects of stochastic analysis) [MSC 2020]
60J25 - Continuous-time Markov processes on general state spaces [MSC 2020]
60J60 - Diffusion processes [MSC 2020]
Soggetto non controllato Explosive Solutions
Gelfand Triples
Generalized Coercivity
Girsanov Theorem on Hilbert
Invariant measures
Itô-Formula
Locally Monotone Coefficients
Markov property
Ordinary differential equations
Partial differential equations
Stochastic 2D and 3D Navier-Stokes Equation
Stochastic Cahn-Hilliard Equations
Stochastic Evolution Equations
Stochastic Partial Differential Equations
Stochastic Porous Media Equations
Stochastic Surface Growth Models
Stochastic integration in Hilbert spaces
Stochastic p-Laplace Equations
Variational approach
Weak and strong solutions
Yamada-Watanabe Theorem in Infinite Dimensions
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00113731
Liu, Wei  
[Cham], : Springer, 2015
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui