From Classical Field Theory to Perturbative Quantum Field Theory / Michael Dütsch
| From Classical Field Theory to Perturbative Quantum Field Theory / Michael Dütsch |
| Autore | Dütsch, Michael |
| Pubbl/distr/stampa | Cham, : Birkhauser, 2019 |
| Descrizione fisica | xix, 538 p. : ill. ; 24 cm |
| Soggetto topico |
81-XX - Quantum theory [MSC 2020]
00A79 (77-XX) - Physics [MSC 2020] 81T15 - Perturbative methods of renormalization applied to problems in quantum field theory [MSC 2020] 53D55 - Deformation quantization, star products [MSC 2020] |
| Soggetto non controllato |
Classical field theory
Deformation quantization Partial differential equations Quantum Electrodynamics Renormalization Group Symmetries Wave front set |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0126877 |
Dütsch, Michael
|
||
| Cham, : Birkhauser, 2019 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
From Classical Field Theory to Perturbative Quantum Field Theory / Michael Dütsch
| From Classical Field Theory to Perturbative Quantum Field Theory / Michael Dütsch |
| Autore | Dütsch, Michael |
| Pubbl/distr/stampa | Cham, : Birkhauser, 2019 |
| Descrizione fisica | xix, 538 p. : ill. ; 24 cm |
| Soggetto topico |
00A79 (77-XX) - Physics [MSC 2020]
53D55 - Deformation quantization, star products [MSC 2020] 81-XX - Quantum theory [MSC 2020] 81T15 - Perturbative methods of renormalization applied to problems in quantum field theory [MSC 2020] |
| Soggetto non controllato |
Classical field theory
Deformation quantization Partial Differential Equations Quantum Electrodynamics Renormalization Group Symmetries Wave front set |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00126877 |
Dütsch, Michael
|
||
| Cham, : Birkhauser, 2019 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Hyperfunctions on Hypo-Analytic Manifolds (AM-136), Volume 136 / / Paulo Cordaro, François Treves
| Hyperfunctions on Hypo-Analytic Manifolds (AM-136), Volume 136 / / Paulo Cordaro, François Treves |
| Autore | Cordaro Paulo |
| Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
| Descrizione fisica | 1 online resource (398 pages) |
| Disciplina | 515/.782 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico |
Hyperfunctions
Submanifolds |
| Soggetto non controllato |
Alexander Grothendieck
Analytic function Analytic manifold Borel transform Boundary value problem Bounded function Bounded set (topological vector space) Bounded set C0 CR manifold Cauchy problem Codimension Coefficient Cohomology Compact space Complex manifold Complex number Complex space Connected space Continuous function (set theory) Continuous function Convex set Convolution Cotangent bundle Counterexample De Rham cohomology Dense set Differential operator Disjoint union Domain of a function Eigenvalues and eigenvectors Embedding Entire function Equation Equivalence class Equivalence relation Euclidean space Existential quantification Exterior algebra Exterior derivative Fiber bundle Fourier transform Function space Functional analysis Fundamental solution Harmonic function Holomorphic function Homomorphism Hyperfunction Hypersurface Infimum and supremum Integration by parts Laplace's equation Limit of a sequence Linear map Linear space (geometry) Linear subspace Locally convex topological vector space Mathematical induction Montel space Montel's theorem Morphism Neighbourhood (mathematics) Norm (mathematics) Open set Partial derivative Partial differential equation Polytope Presheaf (category theory) Pullback (category theory) Pullback Quotient space (topology) Radon measure Real structure Riemann sphere Serre duality Several complex variables Sheaf (mathematics) Sheaf cohomology Singular integral Sobolev space Special case Submanifold Subsequence Subset Summation Tangent bundle Theorem Topology of uniform convergence Topology Transitive relation Transpose Transversal (geometry) Uniform convergence Uniqueness theorem Vanish at infinity Variable (mathematics) Vector bundle Vector field Wave front set |
| ISBN | 1-4008-8256-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- CONTENTS -- PREFACE -- 0.1 BACKGROUND ON SHEAVES OF VECTOR SPACES OVER A MANIFOLD -- 0.2 BACKGROUND ON SHEAF COHOMOLOGY -- CHAPTER I. HYPERFUNCTION S IN A MAXIMAL HYPO-ANALYTIC STRUCTURE -- CHAPTER II. MICROLOCAL THEORY OF HYPERFUNCTIONS ON A MAXIMALLY REAL SUBMANIFOLD OF COMPLEX SPACE -- CHAPTER III. HYPERFUNCTION SOLUTIONS IN A HYPO-ANALYTIC MANIFOLD -- CHAPTER IV. TRANSVERSAL SMOOTHNESS OF HYPERFUNCTION SOLUTIONS -- HISTORICAL NOTES -- BIBLIOGRAPHICAL REFERENCES -- INDEX OF TERMS |
| Record Nr. | UNINA-9910154744403321 |
Cordaro Paulo
|
||
| Princeton, NJ : , : Princeton University Press, , [2016] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||