Contributions to the Theory of Partial Differential Equations. (AM-33), Volume 33 / / Lipman Bers, Fritz John, Salomon Trust |
Autore | Bers Lipman |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (268 pages) |
Disciplina | 517.38 |
Collana | Annals of Mathematics Studies |
Soggetto topico | Differential equations, Partial |
Soggetto non controllato |
A priori estimate
Absolute value Adjoint equation Analytic continuation Analytic function Applied mathematics Axiom Bernhard Riemann Big O notation Bilinear form Boundary value problem Bounded set (topological vector space) Calculation Cauchy problem Cauchy sequence Cauchy–Riemann equations Closure (mathematics) Coefficient Conservation law Constant coefficients Continuous function Derivative Difference "ient Differentiable function Differential equation Differential form Differential operator Directional derivative Dirichlet boundary condition Dirichlet integral Dirichlet problem Eigenfunction Eigenvalues and eigenvectors Ellipse Elliptic operator Elliptic partial differential equation Equation Estimation Exact differential Existence theorem Existential quantification Exponential function Finite difference method Finite difference Function (mathematics) Fundamental solution Green's function Harmonic function Heat equation Hilbert space Hyperbolic partial differential equation Hölder's inequality Infinitesimal generator (stochastic processes) Initial value problem Integral equation Integration by parts Kronecker delta Lagrange polynomial Laplace's equation Limit (mathematics) Limit of a sequence Limit superior and limit inferior Linear differential equation Linear function Linear map Lipschitz continuity Mathematical proof Modulus of continuity Mollifier N-vector Nonlinear system Numerical analysis Operational calculus Ordinary differential equation Parametrix Parity (mathematics) Partial derivative Partial differential equation Pointwise Polynomial Quadratic form Quasiconformal mapping Riemann function Riemannian geometry Riemannian manifold Riemann–Liouville integral Self-adjoint operator Self-adjoint Sign (mathematics) Simultaneous equations Special case Spectral theory Subsequence Theorem Unit vector Upper and lower bounds Variable (mathematics) Variational principle Wave equation Weak solution |
ISBN | 1-4008-8218-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Foreword -- Contents -- I. Green's Formula and Analytic Continuation / Bochner, S. -- II. Strongly Elliptic Systems of Differential Equations / Browder, F. E. -- III. Derivatives of Solutions of Linear Elliptic Partial Differential Equations / John, F. -- IV. On Multivalued Solutions of Linear Partial Differential Equations / Bergman, S. -- V. Function-Theoretical Properties of Solutions of Partial Differential Equations of Elliptic Type / Bers, L. -- VI. On a Generalization of Quasi-Conformal Mappings and its Application to Elliptic Partial Differential Equations / Nirenberg, L. -- VII. Second Order Elliptic Systems of Differential Equations / Morrey, C. B. -- VIII. Conservation Laws of Certain Systems of Partial Differential Equations and Associated Mappings / Loewner, C. -- IX. Parabolic Equations / Lax, P. D. / Milgram, A. N. -- X. Linear Equations of Parabolic Type with Constant Coefficients / Rosenbloom, P. C. -- XI. On Linear Hyperbolic Differential Equations with Variable Coefficients on a Vector Space / Leray, J. -- XII. The Initial Value Problem for Nonlinear Hyperbolic Equations in Two Independent Variables / Lax, P. D. -- XIII. A Geometric Treatment of Linear Hyperbolic Equations of Second Order / Douglis, A. -- XIV. On Cauchy's Problem and Fundamental Solutions / Diaz, J. B. -- XV. A Boundary Value Problem for the Wave Equation and Mean Value Theorems / Protter, M. H. -- Backmatter |
Record Nr. | UNINA-9910154747003321 |
Bers Lipman
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Elements of partial differential equations / / Pavel Drábek, Gabriela Holubová |
Autore | Drábek Pavel <1953-> |
Edizione | [Second, revised and extended edition.] |
Pubbl/distr/stampa | Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2014 |
Descrizione fisica | 1 online resource (291 p.) |
Disciplina | 515/.353 |
Collana | De Gruyter Textbook |
Soggetto topico | Differential equations, Partial |
Soggetto non controllato |
Boundary value problems for evolution and stationary equations
Diffusion equation Integral transforms Laplace and Poisson equation Partial differential equation Wave equation |
ISBN |
3-11-037404-8
3-11-031667-6 |
Classificazione | SK 540 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Preface -- Contents -- Chapter 1. Motivation, Derivation of Basic Mathematical Models -- Chapter 2. Classification, Types of Equations, Boundary and Initial Conditions -- Chapter 3. Linear Partial Differential Equations of the First Order -- Chapter 4. Wave Equation in One Spatial Variable - Cauchy Problem in R -- Chapter 5. Diffusion Equation in One Spatial Variable - Cauchy Problem in R -- Chapter 6. Laplace and Poisson Equations in Two Dimensions -- Chapter 7. Solutions of Initial Boundary Value Problems for Evolution Equations -- Chapter 8. Solutions of Boundary Value Problems for Stationary Equations -- Chapter 9. Methods of Integral Transforms -- Chapter 10. General Principles -- Chapter 11. Laplace and Poisson equations in Higher Dimensions -- Chapter 12. Diffusion Equation in Higher Dimensions -- Chapter 13. Wave Equation in Higher Dimensions -- Appendix A. Sturm-Liouville Problem -- Appendix B. Bessel Functions -- Some Typical Problems Considered in this Book -- Notation -- Bibliography -- Index |
Record Nr. | UNINA-9910787188403321 |
Drábek Pavel <1953->
![]() |
||
Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2014 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Elements of partial differential equations / / Pavel Drábek, Gabriela Holubová |
Autore | Drábek Pavel <1953-> |
Edizione | [Second, revised and extended edition.] |
Pubbl/distr/stampa | Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2014 |
Descrizione fisica | 1 online resource (291 p.) |
Disciplina | 515/.353 |
Collana | De Gruyter Textbook |
Soggetto topico | Differential equations, Partial |
Soggetto non controllato |
Boundary value problems for evolution and stationary equations
Diffusion equation Integral transforms Laplace and Poisson equation Partial differential equation Wave equation |
ISBN |
3-11-037404-8
3-11-031667-6 |
Classificazione | SK 540 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Preface -- Contents -- Chapter 1. Motivation, Derivation of Basic Mathematical Models -- Chapter 2. Classification, Types of Equations, Boundary and Initial Conditions -- Chapter 3. Linear Partial Differential Equations of the First Order -- Chapter 4. Wave Equation in One Spatial Variable - Cauchy Problem in R -- Chapter 5. Diffusion Equation in One Spatial Variable - Cauchy Problem in R -- Chapter 6. Laplace and Poisson Equations in Two Dimensions -- Chapter 7. Solutions of Initial Boundary Value Problems for Evolution Equations -- Chapter 8. Solutions of Boundary Value Problems for Stationary Equations -- Chapter 9. Methods of Integral Transforms -- Chapter 10. General Principles -- Chapter 11. Laplace and Poisson equations in Higher Dimensions -- Chapter 12. Diffusion Equation in Higher Dimensions -- Chapter 13. Wave Equation in Higher Dimensions -- Appendix A. Sturm-Liouville Problem -- Appendix B. Bessel Functions -- Some Typical Problems Considered in this Book -- Notation -- Bibliography -- Index |
Record Nr. | UNINA-9910817891103321 |
Drábek Pavel <1953->
![]() |
||
Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2014 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Equations and Analytical Tools in Mathematical Physics : A Concise Introduction / Yichao Zhu |
Autore | Zhu, Yichao |
Pubbl/distr/stampa | Singapore, : Springer ; Beijing, : Scence, 2021 |
Descrizione fisica | xii, 252 p. : ill. ; 24 cm |
Soggetto topico |
00A06 - Mathematics for nonmathematicians (engineering, social sciences, etc.) [MSC 2020]
00A79 (77-XX) - Physics [MSC 2020] 33C90 - Applications of hypergeometric functions [MSC 2020] 35-XX - Partial differential equations [MSC 2020] |
Soggetto non controllato |
Bessel function
Heat equation Hypergeometric function Legendre polynomial Mathematical modelling Partial differential equations Poisson’s equation Second-order linear partial differential equation Special functions Wave equation |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00283076 |
Zhu, Yichao
![]() |
||
Singapore, : Springer ; Beijing, : Scence, 2021 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Evolutionary Equations : Picard's Theorem for Partial Differential Equations, and Applications / Christian Seifert, Sascha Trostorff, Marcus Waurick |
Autore | Seifert, Christian |
Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2022 |
Descrizione fisica | xii, 317 p. : ill. ; 24 cm |
Altri autori (Persone) |
Trostorff, Sascha
Waurick, Marcus |
Soggetto non controllato |
Causality
Coupled Systems Differential-algebraic equations Elasticity Evolutionary Inclusions Evolutionary equations Exponential stability Heat equation Hilbert space approach Homogenisation Initial boundary value problems Mathematical physics Maxwell's equations Time-dependent partial differential equations Wave equation |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0276185 |
Seifert, Christian
![]() |
||
Cham, : Birkhäuser, : Springer, 2022 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Evolutionary Equations : Picard's Theorem for Partial Differential Equations, and Applications / Christian Seifert, Sascha Trostorff, Marcus Waurick |
Autore | Seifert, Christian |
Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2022 |
Descrizione fisica | xii, 317 p. : ill. ; 24 cm |
Altri autori (Persone) |
Trostorff, Sascha
Waurick, Marcus |
Soggetto topico |
35-XX - Partial differential equations [MSC 2020]
35A01 - Existence problems for PDEs: global existence, local existence, non-existence [MSC 2020] 35A02 - Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness [MSC 2020] 35B35 - Stability in context of PDEs [MSC 2020] 47-XX - Operator theory [MSC 2020] 47F05 - General theory of partial differential operators [MSC 2020] |
Soggetto non controllato |
Causality
Coupled Systems Differential-algebraic equations Elasticity Evolutionary Inclusions Evolutionary equations Exponential stability Heat equation Hilbert space approach Homogenisation Initial boundary value problems Mathematical physics Maxwell's equations Time-dependent partial differential equations Wave equation |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00276185 |
Seifert, Christian
![]() |
||
Cham, : Birkhäuser, : Springer, 2022 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
The hypoelliptic Laplacian and Ray-Singer metrics [[electronic resource] /] / Jean-Michel Bismut, Gilles Lebeau |
Autore | Bismut Jean-Michel |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, : Princeton University Press, 2008 |
Descrizione fisica | 1 online resource (378 p.) |
Disciplina | 515/.7242 |
Altri autori (Persone) | LebeauGilles |
Collana | Annals of mathematics studies |
Soggetto topico |
Differential equations, Hypoelliptic
Laplacian operator Metric spaces |
Soggetto non controllato |
Alexander Grothendieck
Analytic function Asymptote Asymptotic expansion Berezin integral Bijection Brownian dynamics Brownian motion Chaos theory Chern class Classical Wiener space Clifford algebra Cohomology Combination Commutator Computation Connection form Coordinate system Cotangent bundle Covariance matrix Curvature tensor Curvature De Rham cohomology Derivative Determinant Differentiable manifold Differential operator Dirac operator Direct proof Eigenform Eigenvalues and eigenvectors Ellipse Embedding Equation Estimation Euclidean space Explicit formula Explicit formulae (L-function) Feynman–Kac formula Fiber bundle Fokker–Planck equation Formal power series Fourier series Fourier transform Fredholm determinant Function space Girsanov theorem Ground state Heat kernel Hilbert space Hodge theory Holomorphic function Holomorphic vector bundle Hypoelliptic operator Integration by parts Invertible matrix Logarithm Malliavin calculus Martingale (probability theory) Matrix calculus Mellin transform Morse theory Notation Parameter Parametrix Parity (mathematics) Polynomial Principal bundle Probabilistic method Projection (linear algebra) Rectangle Resolvent set Ricci curvature Riemann–Roch theorem Scientific notation Self-adjoint operator Self-adjoint Sign convention Smoothness Sobolev space Spectral theory Square root Stochastic calculus Stochastic process Summation Supertrace Symmetric space Tangent space Taylor series Theorem Theory Torus Trace class Translational symmetry Transversality (mathematics) Uniform convergence Variable (mathematics) Vector bundle Vector space Wave equation |
ISBN |
1-282-45837-X
9786612458378 1-4008-2906-2 |
Classificazione | SK 620 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- Chapter 1. Elliptic Riemann-Roch-Grothendieck and flat vector bundles -- Chapter 2. The hypoelliptic Laplacian on the cotangent bundle -- Chapter 3. Hodge theory, the hypoelliptic Laplacian and its heat kernel -- Chapter 4. Hypoelliptic Laplacians and odd Chern forms -- Chapter 5. The limit as t → +∞ and b → 0 of the superconnection forms -- Chapter 6. Hypoelliptic torsion and the hypoelliptic Ray-Singer metrics -- Chapter 7. The hypoelliptic torsion forms of a vector bundle -- Chapter 8. Hypoelliptic and elliptic torsions: a comparison formula -- Chapter 9. A comparison formula for the Ray-Singer metrics -- Chapter 10. The harmonic forms for b → 0 and the formal Hodge theorem -- Chapter 11. A proof of equation (8.4.6) -- Chapter 12. A proof of equation (8.4.8) -- Chapter 13. A proof of equation (8.4.7) -- Chapter 14. The integration by parts formula -- Chapter 15. The hypoelliptic estimates -- Chapter 16. Harmonic oscillator and the J0 function -- Chapter 17. The limit of A'2φb,±H as b → 0 -- Bibliography -- Subject Index -- Index of Notation |
Record Nr. | UNINA-9910781084803321 |
Bismut Jean-Michel
![]() |
||
Princeton, : Princeton University Press, 2008 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Mathematical aspects of nonlinear dispersive equations [[electronic resource] /] / Jean Bourgain, Carlos E. Kenig, and S. Klainerman, editors |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, : Princeton University Press, 2007 |
Descrizione fisica | 1 online resource (309 p.) |
Disciplina | 515/.355 |
Altri autori (Persone) |
BourgainJean <1954->
KenigCarlos E. <1953-> KlainermanSergiu <1950-> |
Collana | Annals of mathematics studies |
Soggetto topico |
Differential equations, Nonlinear
Nonlinear partial differential operators |
Soggetto non controllato |
Absolute value
Addition Analysis Analytical technique Average Commutator Conservation law Continuous spectrum Critical focus Eigenfunction Eigenvalues and eigenvectors Equation Exponential decay Fourier transform Lecture Manifold Medium frequency Nature Navier–Stokes equations Nonlinear system Scattering theory Sloan Fellowship Spectral method Subset Support (mathematics) Theory Three-dimensional space (mathematics) Volume Wave equation |
ISBN |
1-282-12960-0
9786612129605 1-4008-2779-5 |
Classificazione | SI 830 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Chapter 1. On Strichartz's Inequalities and the Nonlinear Schrödinger Equation on Irrational Tori / Bourgain, J. -- Chapter 2. Diffusion Bound for a Nonlinear Schrödinger Equation / Bourgain, J. / Wang, W.-M. -- Chapter 3. Instability of Finite Difference Schemes for Hyperbolic Conservation Laws / Bressan, A. / Baiti, P. / Jenssen, H. K. -- Chapter 4. Nonlinear Elliptic Equations with Measures Revisited / Brezis, H. / Marcus, M. / Ponce, A. C. -- Chapter 5. Global Solutions for the Nonlinear Schrödinger Equation on Three-Dimensional Compact Manifolds / Burq, N. / Gérard, P. / Tzvetkov, N. -- Chapter 6. Power Series Solution of a Nonlinear Schrödinger Equation / Christ, M. -- Chapter 7. Eulerian-Lagrangian Formalism and Vortex Reconnection / Constantin, P. -- Chapter 8. Long Time Existence for Small Data Semilinear Klein-Gordon Equations on Spheres / Delort, J.-M. / Szeftel, J. -- Chapter 9. Local and Global Wellposedness of Periodic KP-I Equations / Ionescu, A. D. / Kenig, C. E. -- Chapter 10. The Cauchy Problem for the Navier-Stokes Equations with Spatially Almost Periodic Initial Data / Giga, Y. / Mahalov, A. / Nicolaenko, B. -- Chapter 11. Longtime Decay Estimates for the Schrödinger Equation on Manifolds / Rodnianski, I. / Tao, T. -- Contributors -- Index |
Record Nr. | UNINA-9910777728603321 |
Princeton, : Princeton University Press, 2007 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Retarded potentials and time domain boundary integral equations : a road map / Francisco-Javier Sayas |
Autore | Sayas, Francisco-Javier |
Pubbl/distr/stampa | [Cham], : Springer, 2016 |
Descrizione fisica | XV, 242 p. : ill. ; 24 cm |
Soggetto topico |
65R20 - Numerical methods for integral equations [MSC 2020]
45Axx - Linear integral equations [MSC 2020] 45Bxx - Fredholm integral equations [MSC 2020] 35L20 - Initial-boundary value problems for second-order hyperbolic equations [MSC 2020] 65M12 - Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs [MSC 2020] 35D30 - Weak solutions to PDEs [MSC 2020] 65M38 - Boundary element methods for initial value and initial-boundary value problems involving PDEs [MSC 2020] 35Q61 - Maxwell equations [MSC 2020] 65J08 - Numerical solutions to abstract evolution equations [MSC 2020] |
Soggetto non controllato |
Acoustics
Boundary integral equation Partial differential equations Retarded potentials Variational methods Wave equation |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0115324 |
Sayas, Francisco-Javier
![]() |
||
[Cham], : Springer, 2016 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Retarded potentials and time domain boundary integral equations : a road map / Francisco-Javier Sayas |
Autore | Sayas, Francisco-Javier |
Pubbl/distr/stampa | [Cham], : Springer, 2016 |
Descrizione fisica | XV, 242 p. : ill. ; 24 cm |
Soggetto topico |
35D30 - Weak solutions to PDEs [MSC 2020]
35L20 - Initial-boundary value problems for second-order hyperbolic equations [MSC 2020] 35Q61 - Maxwell equations [MSC 2020] 45Axx - Linear integral equations [MSC 2020] 45Bxx - Fredholm integral equations [MSC 2020] 65J08 - Numerical solutions to abstract evolution equations [MSC 2020] 65M12 - Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs [MSC 2020] 65M38 - Boundary element methods for initial value and initial-boundary value problems involving PDEs [MSC 2020] 65R20 - Numerical methods for integral equations [MSC 2020] |
Soggetto non controllato |
Acoustics
Boundary integral equation Partial differential equations Retarded potentials Variational methods Wave equation |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00115324 |
Sayas, Francisco-Javier
![]() |
||
[Cham], : Springer, 2016 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|