Characters of Reductive Groups over a Finite Field. (AM-107), Volume 107 / / George Lusztig |
Autore | Lusztig George |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (408 pages) : illustrations |
Disciplina | 512/.2 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Finite groups
Finite fields (Algebra) Characters of groups |
Soggetto non controllato |
Addition
Algebra representation Algebraic closure Algebraic group Algebraic variety Algebraically closed field Bijection Borel subgroup Cartan subalgebra Character table Character theory Characteristic function (probability theory) Characteristic polynomial Class function (algebra) Classical group Coefficient Cohomology with compact support Cohomology Combination Complex number Computation Conjugacy class Connected component (graph theory) Coxeter group Cyclic group Cyclotomic polynomial David Kazhdan Dense set Derived category Diagram (category theory) Dimension Direct sum Disjoint sets Disjoint union E6 (mathematics) Eigenvalues and eigenvectors Endomorphism Equivalence class Equivalence relation Existential quantification Explicit formula Explicit formulae (L-function) Fiber bundle Finite field Finite group Fourier transform Green's function Group (mathematics) Group action Group representation Harish-Chandra Hecke algebra Identity element Integer Irreducible representation Isomorphism class Jordan decomposition Line bundle Linear combination Local system Mathematical induction Maximal torus Module (mathematics) Monodromy Morphism Orthonormal basis P-adic number Parametrization Parity (mathematics) Partially ordered set Perverse sheaf Pointwise Polynomial Quantity Rational point Reductive group Ree group Schubert variety Scientific notation Semisimple Lie algebra Sheaf (mathematics) Simple group Simple module Special case Standard basis Subset Subtraction Summation Surjective function Symmetric group Tensor product Theorem Two-dimensional space Unipotent representation Vector bundle Vector space Verma module Weil conjecture Weyl group Zariski topology |
ISBN | 1-4008-8177-3 |
Classificazione | SK 260 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- 1. COMPUTATION OF LOCAL INTERSECTION COHOMOLOGY OF CERTAIN LINE BUNDLES OVER A SCHUBERT VARIETY -- 2. LOCAL INTERSECTION COHOMOLOGY WITH TWISTED COEFFICIENTS OF THE CLOSURES OF THE VARIETIES XW -- 3. GLOBAL INTERSECTION COHOMOLOGY WITH TWISTED COEFFICIENTS OF THE VARIETY X̅W -- 4. REPRESENTATIONS OF WEYL GROUPS -- 5. CELLS IN WEYL GROUPS -- 6. AN INTEGRALITY THEOREM AND A DISJOINTNESS THEOREM -- 7. SOME EXCEPTIONAL GROUPS -- 8. DECOMPOSITION OF INDUCED REPRESENTATIONS -- 9. CLASSICAL GROUPS -- 10. COMPLETION OF THE PROOF OF THEOREM 4.23 -- 11. EIGENVALUES OF FROBENIUS -- 12. ON THE STRUCTURE OF LEFT CELLS -- 13. RELATIONS WITH CONJUGACY CLASSES -- 14. CONCLUDING REMARKS -- APPENDIX -- REFERENCES -- SUBJECT INDEX -- NOTATION INDEX -- Backmatter |
Record Nr. | UNINA-9910154752803321 |
Lusztig George
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Conformal symmetry breaking operators for differential forms on spheres / Toshiyuki Kobayashi, Toshihisa Kubo, Michael Pevzner |
Autore | Kobayashi, Toshiyuki |
Pubbl/distr/stampa | Singapore, : Springer, 2016 |
Descrizione fisica | IX, 192 p. ; 24 cm |
Altri autori (Persone) |
Kubo, Toshihisa
Pevzner, Michael |
Soggetto topico |
53A31 - Differential geometry of submanifolds of Möbius space [MSC 2020]
22E47 - Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.) [MSC 2020] 22E46 - Semisimple Lie groups and their representations [MSC 2020] 53C10 - G-structures [MSC 2020] 58J70 - Invariance and symmetry properties for PDEs on manifolds [MSC 2020] |
Soggetto non controllato |
Branching law
Conformal geometry Conformal holography Differential Forms F-method Fradkin-Tseytlin operator Gegenbauer polynomial Hodge operator Homogeneous space Hyperbolic space Hypergeometric function Lie groups Lorentz group Paneitz operator Reductive Groups Riemannian geometry Symmetry breaking operators Unitary representations Verma module Yamabe operator |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0107586 |
Kobayashi, Toshiyuki
![]() |
||
Singapore, : Springer, 2016 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Conformal symmetry breaking operators for differential forms on spheres / Toshiyuki Kobayashi, Toshihisa Kubo, Michael Pevzner |
Autore | Kobayashi, Toshiyuki |
Pubbl/distr/stampa | Singapore, : Springer, 2016 |
Descrizione fisica | IX, 192 p. ; 24 cm |
Altri autori (Persone) |
Kubo, Toshihisa
Pevzner, Michael |
Soggetto topico |
22E46 - Semisimple Lie groups and their representations [MSC 2020]
22E47 - Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.) [MSC 2020] 53A31 - Differential geometry of submanifolds of Möbius space [MSC 2020] 53C10 - G-structures [MSC 2020] 58J70 - Invariance and symmetry properties for PDEs on manifolds [MSC 2020] |
Soggetto non controllato |
Branching law
Conformal geometry Conformal holography Differential Forms F-method Fradkin-Tseytlin operator Gegenbauer polynomial Hodge operator Homogeneous space Hyperbolic space Hypergeometric function Lie groups Lorentz group Paneitz operator Reductive Groups Riemannian geometry Symmetry breaking operators Unitary representations Verma module Yamabe operator |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00107586 |
Kobayashi, Toshiyuki
![]() |
||
Singapore, : Springer, 2016 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Cosmology in (2 + 1) -Dimensions, Cyclic Models, and Deformations of M2,1. (AM-121), Volume 121 / / Victor Guillemin |
Autore | Guillemin Victor |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (236 pages) : illustrations |
Disciplina | 523.1/072/4 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Cosmology - Mathematical models
Geometry, Differential Lorentz transformations |
Soggetto non controllato |
Automorphism
Bijection C0 Canonical form Canonical transformation Cauchy distribution Causal structure Cayley transform Codimension Cohomology Cokernel Compactification (mathematics) Complexification (Lie group) Computation Conformal geometry Conformal map Conformal symmetry Connected sum Contact geometry Corank Covariant derivative Covering space Deformation theory Diagram (category theory) Diffeomorphism Differentiable manifold Differential operator Dimension (vector space) Einstein field equations Equation Euler characteristic Existential quantification Fiber bundle Fibration Floquet theory Four-dimensional space Fourier integral operator Fourier transform Fundamental group Geodesic Hamilton–Jacobi equation Hilbert space Holomorphic function Holomorphic vector bundle Hyperfunction Hypersurface Integral curve Integral geometry Integral transform Intersection (set theory) Invertible matrix K-finite Lagrangian (field theory) Lie algebra Light cone Linear map Manifold Maxima and minima Minkowski space Module (mathematics) Notation One-parameter group Parametrix Parametrization Principal bundle Product metric Pseudo-differential operator Quadratic equation Quadratic form Quadric Radon transform Riemann surface Riemannian manifold Seifert fiber space Sheaf (mathematics) Siegel domain Simply connected space Submanifold Submersion (mathematics) Support (mathematics) Surjective function Symplectic manifold Symplectic vector space Symplectomorphism Tangent space Tautology (logic) Tensor product Theorem Topological space Topology Two-dimensional space Unit vector Universal enveloping algebra Variable (mathematics) Vector bundle Vector field Vector space Verma module Volume form X-ray transform |
ISBN | 1-4008-8241-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Foreword -- Part I. A relativistic approach to Zoll phenomena -- Part II. The general theory of Zollfrei deformations -- Part III. Zollfrei deformations of M2,1 -- Part IV. The generalized x-ray transform -- Part V. The Floquet theory -- Bibliography |
Record Nr. | UNINA-9910154746903321 |
Guillemin Victor
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Symmetry breaking for representations of rank one orthogonal groups II / Toshiyuki Kobayashi, Birgit Speh |
Autore | Kobayashi, Toshiyuki |
Pubbl/distr/stampa | Singapore, : Springer, 2018 |
Descrizione fisica | XV, 342 p. ; 24 cm |
Altri autori (Persone) | Speh, Birgit |
Soggetto topico |
11F70 - Representation-theoretic methods; automorphic representations over local and global fields [MSC 2020]
53A31 - Differential geometry of submanifolds of Möbius space [MSC 2020] 22E30 - Analysis on real and complex Lie groups [MSC 2020] 22E46 - Semisimple Lie groups and their representations [MSC 2020] 22E45 - Representations of Lie and linear algebraic groups over real fields: analytic methods [MSC 2020] 58J70 - Invariance and symmetry properties for PDEs on manifolds [MSC 2020] |
Soggetto non controllato |
(g,K) cohomology
Automorphic forms Branching law Conformal geometry Differential Forms F-method Gegenbauer polynomial Gross-Prasad conjecture Intertwining operator Juhl operator Lie groups Lorentz group Orthogonal group Period Reductive Groups Restriction of representation Symmetry breaking operator Tempered representation Unitary representations Verma module |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0122792 |
Kobayashi, Toshiyuki
![]() |
||
Singapore, : Springer, 2018 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Symmetry breaking for representations of rank one orthogonal groups II / Toshiyuki Kobayashi, Birgit Speh |
Autore | Kobayashi, Toshiyuki |
Pubbl/distr/stampa | Singapore, : Springer, 2018 |
Descrizione fisica | XV, 342 p. ; 24 cm |
Altri autori (Persone) | Speh, Birgit |
Soggetto topico |
11F70 - Representation-theoretic methods; automorphic representations over local and global fields [MSC 2020]
22E30 - Analysis on real and complex Lie groups [MSC 2020] 22E45 - Representations of Lie and linear algebraic groups over real fields: analytic methods [MSC 2020] 22E46 - Semisimple Lie groups and their representations [MSC 2020] 53A31 - Differential geometry of submanifolds of Möbius space [MSC 2020] 58J70 - Invariance and symmetry properties for PDEs on manifolds [MSC 2020] |
Soggetto non controllato |
(g,K) cohomology
Automorphic forms Branching law Conformal geometry Differential Forms F-method Gegenbauer polynomial Gross-Prasad conjecture Intertwining operator Juhl operator Lie groups Lorentz group Orthogonal group Period Reductive Groups Restriction of representation Symmetry breaking operator Tempered representation Unitary representations Verma module |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00122792 |
Kobayashi, Toshiyuki
![]() |
||
Singapore, : Springer, 2018 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|