top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Energy Data Analytics for Smart Meter Data
Energy Data Analytics for Smart Meter Data
Autore Reinhardt Andreas
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (346 p.)
Soggetto topico Technology: general issues
Soggetto non controllato activation current
ambient influences
appliance load signatures
appliance recognition
attention mechanism
convolutional neural network
Convolutional Neural Network
data annotation
data privacy
data-driven approaches
deep learning
deep neural network
deep neural networks
device classification accuracy
distance similarity matrix
electric load simulation
electric vehicle
electrical energy
electricity theft detection
energy consumption
energy data analytics
energy data processing
energy disaggregation
ethics
exponential distribution
fryze power theory
Gaussian mixture models
GDPR
K-means cluster
load disaggregation
load scheduling
machine learning
mathematical modeling
multi-label learning
n/a
NILM
NILM datasets
non-intrusive load monitoring
Non-intrusive Load Monitoring
Non-Intrusive Load Monitoring (NILM)
nontechnical losses
Poisson distribution
power consumption data
power signature
pulse generator
random forest
real-time
review
satisfaction
semi-automatic labeling
Shapley Value
signature
simulation
smart energy system
smart grid
smart grids
smart meter
smart meter data
smart metering
smart meters
smart power grids
solar photovoltaics
synthetic data
synthetic minority oversampling technique
text convolutional neural networks (TextCNN)
time-series classification
transient load signature
transients
user-centric applications of energy data
V-I trajectory
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557645803321
Reinhardt Andreas  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Improving Energy Efficiency through Data-Driven Modeling, Simulation and Optimization
Improving Energy Efficiency through Data-Driven Modeling, Simulation and Optimization
Autore Deschrijver Dirk
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (201 p.)
Soggetto topico Technology: general issues
Soggetto non controllato ant colony optimization
anti-icing
appliance classification
appliance feature
big data process
building energy consumption
building load forecasting
clustering
CO2 reduction
convolutional neural network
design
enclosure structure
energy
energy baselines
energy consumption
energy efficiency
experimental validation
field measurement
forecasting
fracturing roofs to maintain entry (FRME)
fuel
heat and mass transfer
heat load reduction
heat transfer coefficient
heating power distribution
machine learning
manufacturing
meta-heuristics
modelling
multi-objective combinatorial optimization
n/a
neural methods
non-intrusive load monitoring
numerical simulation
optimization method
passive house
prediction
predictive maintenance
range
recurrence graph
regional
side abutment pressure
smart intelligent systems
strata movement
thermal improved of buildings
turbo-propeller
V-I trajectory
weight
weighted recurrence graph
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557346903321
Deschrijver Dirk  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui