top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Swarm Robotics
Swarm Robotics
Autore Spezzano Giandomenico
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (310 p.)
Soggetto non controllato self-organization
signal source localization
multi-robot system
sensor deployment
parallel technique
shape normalization
genetic algorithm
multiple robots
optimization
improved potential field
optimal configuration
autonomous docking
asymmetrical interaction
comparison
behaviors
patterns
self-assembly robots
congestion control
surface-water environment
target recognition
coordinate motion
UAV swarms
formation reconfiguration
swarm robotics
swarm intelligence
artificial bee colony algorithm
obstacle avoidance
fish swarm optimization
search algorithm
robotics
time-difference-of-arrival (TDOA)
formation
mobile robots
formation control
meta-heuristic
event-triggered communication
search
virtual structure
3D model identification
surveillance
event-driven coverage
scale-invariant feature transform
system stability
Swarm intelligence algorithm
bionic intelligent algorithm
unmanned aerial vehicle
underwater environment
artificial flora (AF) algorithm
swarm behavior
weighted implicit shape representation
Cramer-Rao low bound (CRLB)
environmental perception
particle swarm optimization
modular robots
cooperative target hunting
virtual linkage
multi-AUV
consensus control
panoramic view
nonlinear disturbance observer
sliding mode controller
path optimization
Swarm Chemistry
multi-agents
ISBN 3-03897-923-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910674019203321
Spezzano Giandomenico  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
UAV or Drones for Remote Sensing Applications in GPS/GNSS Enabled and GPS/GNSS Denied Environments
UAV or Drones for Remote Sensing Applications in GPS/GNSS Enabled and GPS/GNSS Denied Environments
Autore Gonzalez Toro Felipe
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (388 p.)
Soggetto topico Technology: general issues
Soggetto non controllato UAV
landing
optical flow
video navigation
Kalman filter
coastal mapping
coastal monitoring
Digital Elevation Models (DEMs)
geomorphological evolution
photogrammetry
Structure-from-Motion (SfM)
Unmanned Aerial Vehicles (UAVs)
snow mapping
UAS
remote sensing
direct georeferencing
snow field
snow-covered area
snow depth
water level changes
UAV photogrammetry
tidal phase
GNSS
Kilim River
unmanned aerial vehicles
UAV swarms
visual detection
visual tracking
machine vision
deep learning
YOLO
laser guidance
emergency landing
particle filter
change detection
convolutional neural networks
moving camera
image alignment
multirotor
ground effect
sensor faults
UAV imagery
bundle block adjustment
digital surface model
orthomosaic
data collection
accuracy
technical guidelines
DSM assessment
backpack mobile mapping
underground cellars
unmanned aerial vehicle
unmanned aerial system
vision-based navigation
search and rescue
vision and action
OODA
inspection
target detection
autonomous localization
3D registration
GPS-denied environment
real-time
multi-robot
bioinspired map
topologic mapping
map exploration
onboard GNSS RTK
UAS traffic management
multiple UAV navigation
navigation in GPS/GNSS-denied environments
distributed state estimation
consensus theory
computer architecture
decision making
navigation
semantics
aerial systems
applications, inspection robotics, bridge inspection with UAS
POMDP
Deep Reinforcement-Learning
multi-agent
search
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557343503321
Gonzalez Toro Felipe  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui