top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Mathematical Biophysics / Andrew Rubin, Galina Riznichenko
Mathematical Biophysics / Andrew Rubin, Galina Riznichenko
Autore Rubin, Andrew
Pubbl/distr/stampa New York, : Springer, 2014
Descrizione fisica xv, 273 p. : ill. ; 24 cm
Altri autori (Persone) Riznichenko, Galina
Soggetto topico 92B05 - General biology and biomathematics [MSC 2020]
92-XX - Biology and other natural sciences [MSC 2020]
92C05 - Biophysics [MSC 2020]
92C42 - Systems biology, networks [MSC 2020]
92C45 - Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.) [MSC 2020]
Soggetto non controllato Autowave processes
Belousov–Zhabotinsky reaction
Biological Systems
Classic Lotka and Volterra models
Direct multiparticle models processes subcellular systems
Direct multiparticle simulation of protein interactions
Dynamics models
Electron Transfer in PSII
Generalized kinetic model primary photosynthetic processes
Growth and catalysis models
Heart activity
Hodgkin and HuxleyKinetic model ATPase
Kinetic model interaction of two photosystems
Kinetic models photosynthetic processes
Leslie matrices
Mathematical Models
Mathematical biophysics
Mathematical modeling, living systems
Modeling processes in living systems
Morphogenesis models
Morphogenetic field
Nerve pulse propagation
Nonlinear models DNA dynamics
Oscillations periodic space structures, Chara corallina
Oscillations, rhythms and chaos in biological systems
Photosynthetic electron transport
Protein complex formation solution
Protein interactions in photosynthetic membrane
Reduced FitzHugh-Nagumo Model
Spaciotemporal evolution electrochemical potential
Spatiotemporal self-organization of biological systems
Subcellular systems
The Verhulst equation
Turing instability
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0132708
Rubin, Andrew  
New York, : Springer, 2014
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Mathematical Biophysics / Andrew Rubin, Galina Riznichenko
Mathematical Biophysics / Andrew Rubin, Galina Riznichenko
Autore Rubin, Andrew
Pubbl/distr/stampa New York, : Springer, 2014
Descrizione fisica xv, 273 p. : ill. ; 24 cm
Altri autori (Persone) Riznichenko, Galina
Soggetto topico 92-XX - Biology and other natural sciences [MSC 2020]
92B05 - General biology and biomathematics [MSC 2020]
92C05 - Biophysics [MSC 2020]
92C42 - Systems biology, networks [MSC 2020]
92C45 - Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.) [MSC 2020]
Soggetto non controllato Autowave processes
Belousov–Zhabotinsky reaction
Biological Systems
Classic Lotka and Volterra models
Direct multiparticle models processes subcellular systems
Direct multiparticle simulation of protein interactions
Dynamics models
Electron Transfer in PSII
Generalized kinetic model primary photosynthetic processes
Growth and catalysis models
Heart activity
Hodgkin and HuxleyKinetic model ATPase
Kinetic model interaction of two photosystems
Kinetic models photosynthetic processes
Leslie matrices
Mathematical Models
Mathematical biophysics
Mathematical modeling, living systems
Modeling processes in living systems
Morphogenesis models
Morphogenetic field
Nerve pulse propagation
Nonlinear models DNA dynamics
Oscillations periodic space structures, Chara corallina
Oscillations, rhythms and chaos in biological systems
Photosynthetic electron transport
Protein complex formation solution
Protein interactions in photosynthetic membrane
Reduced FitzHugh-Nagumo Model
Spaciotemporal evolution electrochemical potential
Spatiotemporal self-organization of biological systems
Subcellular systems
The Verhulst equation
Turing instability
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00132708
Rubin, Andrew  
New York, : Springer, 2014
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Partial Differential Equations in Ecology : 80 Years and Counting
Partial Differential Equations in Ecology : 80 Years and Counting
Autore Petrovskii Sergei
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (238 p.)
Soggetto topico Mathematics & science
Research & information: general
Soggetto non controllato Allen-Cahn model
animal movement
bistability
Cahn-Hilliard model
carrying capacity
chemostat model
continuum models
correlated random walk
cross diffusion
desertification
diffusion
dispersal
dynamic behaviors
energy constraints
Evolutionary dynamics
front instabilities
G-function
generalist predator
ghost attractor
homoclinic snaking
individual based models
invasive species
invasive species in a river
linear determinacy
long transients
movement ecology
mutation
non-constant positive solution
nonlocal interaction
optimal control
partial differential equation
partial differential equations
pattern formation
Pearl-Verhulst logistic model
phenotypic plasticity
plant populations
population dynamics
population growth
prey-predator
Public Goods
Quorum Sensing
reaction-diffusion
reaction-diffusion model
regime shift
semi-linear parabolic system of equations
social dynamics
spatial ecology
spatial fluctuation
spatial heterogeneity
spatial patterns
spatiotemporal pattern
spreading speeds
stage structure
taxis
telegrapher's equation
total realized asymptotic population abundance
travelling waves
Turing instability
Turing patterns
Turing-Hopf bifurcation
vegetation pattern formation
wave of protests
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Partial Differential Equations in Ecology
Record Nr. UNINA-9910669803203321
Petrovskii Sergei  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui