Building Bridges Between Algebra and Topology / Wojciech Chachólski ... [et al.] ; Dolors Herbera, Wolfgang Pitsch, Santiago Zarzuela editors |
Pubbl/distr/stampa | Cham, : Birkhäuser, 2018 |
Descrizione fisica | xiii, 224 p. : ill. ; 24 cm |
Soggetto topico |
18Gxx - Homological algebra in category theory, derived categories and functors [MSC 2020]
16Exx - Homological methods in associative algebras [MSC 2020] 18Dxx - Categorical structures [MSC 2020] 13Dxx - Homological methods in commutative ring theory [MSC 2020] 55Uxx - Applied homological algebra and category theory in algebraic topology [MSC 2020] |
Soggetto non controllato |
Brave new algebra
Hall algebras Idempotent functors Support theory Triangulated categories |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0124587 |
Cham, : Birkhäuser, 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Building Bridges Between Algebra and Topology / Wojciech Chachólski ... [et al.] ; Dolors Herbera, Wolfgang Pitsch, Santiago Zarzuela editors |
Pubbl/distr/stampa | Cham, : Birkhäuser, 2018 |
Descrizione fisica | xiii, 224 p. : ill. ; 24 cm |
Soggetto topico |
13Dxx - Homological methods in commutative ring theory [MSC 2020]
16Exx - Homological methods in associative algebras [MSC 2020] 18Dxx - Categorical structures [MSC 2020] 18Gxx - Homological algebra in category theory, derived categories and functors [MSC 2020] 55Uxx - Applied homological algebra and category theory in algebraic topology [MSC 2020] |
Soggetto non controllato |
Brave new algebra
Hall algebras Idempotent functors Support theory Triangulated categories |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00124587 |
Cham, : Birkhäuser, 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Research Directions in Symplectic and Contact Geometry and Topology / Bahar Acu ... [et al.] editors |
Pubbl/distr/stampa | Cham, : Springer, 2021 |
Descrizione fisica | xvii, 329 p. : ill. ; 24 cm |
Soggetto topico |
53-XX - Differential geometry [MSC 2020]
53Dxx - Symplectic geometry, contact geometry [MSC 2020] 00B25 - Proceedings of conferences of miscellaneous specific interest [MSC 2020] 57R17 - Symplectic and contact topology in high or arbitrary dimension [MSC 2020] 57K33 - Contact structures in 3 dimensions [MSC 2020] |
Soggetto non controllato |
Derived categories
Differentiable manifolds Differential topology Hirzebruch surfaces Khovanov homology Lagrangian cobordisms Legendrian submanifolds Polyfold theory Pseudoholomorphic curves Triangulated categories |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0275255 |
Cham, : Springer, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Research Directions in Symplectic and Contact Geometry and Topology / Bahar Acu ... [et al.] editors |
Pubbl/distr/stampa | Cham, : Springer, 2021 |
Descrizione fisica | xvii, 329 p. : ill. ; 24 cm |
Soggetto topico |
00B25 - Proceedings of conferences of miscellaneous specific interest [MSC 2020]
53-XX - Differential geometry [MSC 2020] 53Dxx - Symplectic geometry, contact geometry [MSC 2020] 57K33 - Contact structures in 3 dimensions [MSC 2020] 57R17 - Symplectic and contact topology in high or arbitrary dimension [MSC 2020] |
Soggetto non controllato |
Derived categories
Differentiable manifolds Differential topology Hirzebruch surfaces Khovanov homology Lagrangian cobordisms Legendrian submanifolds Polyfold theory Pseudoholomorphic curves Triangulated categories |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00275255 |
Cham, : Springer, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Superschool on Derived Categories and D-branes : Edmonton, Canada, July 17-23, 2016 / Matthew Ballard ... [et al.] editors |
Pubbl/distr/stampa | Cham, : Pacific Institute for the Mathematical Sciences, : Springer, 2018 |
Descrizione fisica | ix, 260 p. : ill. ; 24 cm |
Soggetto topico |
14Fxx - (Co)homology theory in algebraic geometry [MSC 2020]
14J33 - Mirror symmetry (algebro-geometric aspects) [MSC 2020] 53D37 - Mirror symmetry, symplectic aspects; homological mirror symmetry and Fukaya category [MSC 2020] |
Soggetto non controllato |
Abeliated categories
Batyrev mirror symmetry Bridgeland stability conditions Differential graded categories Homological mirror symmetry Quivers SYZ conjecture Symplectic geometry Topological string theories Triangulated categories |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0125021 |
Cham, : Pacific Institute for the Mathematical Sciences, : Springer, 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Superschool on Derived Categories and D-branes : Edmonton, Canada, July 17-23, 2016 / Matthew Ballard ... [et al.] editors |
Pubbl/distr/stampa | Cham, : Pacific Institute for the Mathematical Sciences, : Springer, 2018 |
Descrizione fisica | ix, 260 p. : ill. ; 24 cm |
Soggetto topico |
14Fxx - (Co)homology theory in algebraic geometry [MSC 2020]
14J33 - Mirror symmetry (algebro-geometric aspects) [MSC 2020] 53D37 - Mirror symmetry, symplectic aspects; homological mirror symmetry and Fukaya category [MSC 2020] |
Soggetto non controllato |
Abeliated categories
Batyrev mirror symmetry Bridgeland stability conditions Differential graded categories Homological mirror symmetry Quivers SYZ conjecture Symplectic geometry Topological string theories Triangulated categories |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00125021 |
Cham, : Pacific Institute for the Mathematical Sciences, : Springer, 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Topics in algebraic and topological K-theory / P. F. Baum ... [et al.] editors |
Pubbl/distr/stampa | Berlin, : Springer, 2011 |
Descrizione fisica | XVI, 302 p. : ill. ; 24 cm |
Soggetto topico | 19-XX - $K$-theory [MSC 2020] |
Soggetto non controllato |
Algebraic K-theory
Baum-Connes conjecture DG-categories Topological K-theory Triangulated categories |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0086889 |
Berlin, : Springer, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Topics in algebraic and topological K-theory / P. F. Baum ... [et al.] editors |
Pubbl/distr/stampa | Berlin, : Springer, 2011 |
Descrizione fisica | XVI, 302 p. : ill. ; 24 cm |
Soggetto topico | 19-XX - $K$-theory [MSC 2020] |
Soggetto non controllato |
Algebraic K-theory
Baum-Connes conjecture DG-categories Topological K-theory Triangulated categories |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00086889 |
Berlin, : Springer, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Triangulated Categories of Mixed Motives / Denis-Charles Cisinski, Frédéric Déglise |
Autore | Cisinski, Denis-Charles |
Pubbl/distr/stampa | Cham, : Springer, 2019 |
Descrizione fisica | xlii, 406 p. : ill. ; 24 cm |
Altri autori (Persone) | Déglise, Frédéric |
Soggetto topico |
14Cxx - Cycles and subschemes [MSC 2020]
14F42 - Motivic cohomology; motivic homotopy theory [MSC 2020] 19D55 - $K$-theory and homology; cyclic homology and cohomology [MSC 2020] 19E15 - Algebraic cycles and motivic cohomology ($K$-theoretic aspects) [MSC 2020] |
Soggetto non controllato |
Cohomological descent
Grothendieck-Verdier duality Mixed motives Motivic cohomology Motivic homotopy Six functors Triangulated categories |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0127236 |
Cisinski, Denis-Charles | ||
Cham, : Springer, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Triangulated Categories of Mixed Motives / Denis-Charles Cisinski, Frédéric Déglise |
Autore | Cisinski, Denis-Charles |
Pubbl/distr/stampa | Cham, : Springer, 2019 |
Descrizione fisica | xlii, 406 p. : ill. ; 24 cm |
Altri autori (Persone) | Déglise, Frédéric |
Soggetto topico |
14Cxx - Cycles and subschemes [MSC 2020]
14F42 - Motivic cohomology; motivic homotopy theory [MSC 2020] 19D55 - $K$-theory and homology; cyclic homology and cohomology [MSC 2020] 19E15 - Algebraic cycles and motivic cohomology ($K$-theoretic aspects) [MSC 2020] |
Soggetto non controllato |
Cohomological descent
Grothendieck-Verdier duality Mixed motives Motivic cohomology Motivic homotopy Six functors Triangulated categories |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00127236 |
Cisinski, Denis-Charles | ||
Cham, : Springer, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|