The ergodic theory of lattice subgroups [[electronic resource] /] / Alexander Gorodnik and Amos Nevo |
Autore | Gorodnik Alexander <1975-> |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, N.J., : Princeton University Press, 2009 |
Descrizione fisica | 1 online resource (136 p.) |
Disciplina | 515/.48 |
Altri autori (Persone) | NevoAmos <1966-> |
Collana | Annals of mathematics studies |
Soggetto topico |
Ergodic theory
Lie groups Lattice theory Harmonic analysis Dynamics |
Soggetto non controllato |
Absolute continuity
Algebraic group Amenable group Asymptote Asymptotic analysis Asymptotic expansion Automorphism Borel set Bounded function Bounded operator Bounded set (topological vector space) Congruence subgroup Continuous function Convergence of random variables Convolution Coset Counting problem (complexity) Counting Differentiable function Dimension (vector space) Diophantine approximation Direct integral Direct product Discrete group Embedding Equidistribution theorem Ergodic theory Ergodicity Estimation Explicit formulae (L-function) Family of sets Haar measure Hilbert space Hyperbolic space Induced representation Infimum and supremum Initial condition Interpolation theorem Invariance principle (linguistics) Invariant measure Irreducible representation Isometry group Iwasawa group Lattice (group) Lie algebra Linear algebraic group Linear space (geometry) Lipschitz continuity Mass distribution Mathematical induction Maximal compact subgroup Maximal ergodic theorem Measure (mathematics) Mellin transform Metric space Monotonic function Neighbourhood (mathematics) Normal subgroup Number theory One-parameter group Operator norm Orthogonal complement P-adic number Parametrization Parity (mathematics) Pointwise convergence Pointwise Principal homogeneous space Principal series representation Probability measure Probability space Probability Rate of convergence Regular representation Representation theory Resolution of singularities Sobolev space Special case Spectral gap Spectral method Spectral theory Square (algebra) Subgroup Subsequence Subset Symmetric space Tensor algebra Tensor product Theorem Transfer principle Unit sphere Unit vector Unitary group Unitary representation Upper and lower bounds Variable (mathematics) Vector group Vector space Volume form Word metric |
ISBN |
1-282-30380-5
9786612303807 1-4008-3106-7 |
Classificazione | SI 830 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Chapter One. Main results: Semisimple Lie groups case -- Chapter Two. Examples and applications -- Chapter Three. Definitions, preliminaries, and basic tools -- Chapter Four. Main results and an overview of the proofs -- Chapter Five. Proof of ergodic theorems for S-algebraic groups -- Chapter Six. Proof of ergodic theorems for lattice subgroups -- Chapter Seven. Volume estimates and volume regularity -- Chapter Eight. Comments and complements -- Bibliography -- Index |
Record Nr. | UNINA-9910781200803321 |
Gorodnik Alexander <1975-> | ||
Princeton, N.J., : Princeton University Press, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Radically Elementary Probability Theory. (AM-117), Volume 117 / / Edward Nelson |
Autore | Nelson Edward |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (109 pages) : illustrations |
Disciplina | 519.2 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Martingales (Mathematics)
Stochastic processes Probabilities |
Soggetto non controllato |
Abraham Robinson
Absolute value Addition Algebra of random variables Almost surely Axiom Axiomatic system Borel set Bounded function Cantor's diagonal argument Cardinality Cartesian product Central limit theorem Chebyshev's inequality Compact space Contradiction Convergence of random variables Corollary Correlation coefficient Counterexample Dimension (vector space) Dimension Division by zero Elementary function Estimation Existential quantification Family of sets Finite set Hyperplane Idealization Independence (probability theory) Indicator function Infinitesimal Internal set theory Joint probability distribution Law of large numbers Linear function Martingale (probability theory) Mathematical induction Mathematician Mathematics Measure (mathematics) N0 Natural number Non-standard analysis Norm (mathematics) Orthogonal complement Parameter Path space Predictable process Probability distribution Probability measure Probability space Probability theory Probability Product topology Projection (linear algebra) Quadratic variation Random variable Real number Requirement Scientific notation Sequence Set (mathematics) Significant figures Special case Standard deviation Statistical mechanics Stochastic process Subalgebra Subset Summation Theorem Theory Total variation Transfer principle Transfinite number Trigonometric functions Upper and lower bounds Variable (mathematics) Variance Vector space W0 Wiener process Without loss of generality |
ISBN | 1-4008-8214-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Table of contents -- Preface -- Acknowledgments -- 1. Random variables -- 2. Algebras of random variables -- 3. Stochastic processes -- 4. External concepts -- 5. Infinitesimals -- 6. External analogues of internal notions -- 7. Properties that hold almost everywhere -- 8. L1 random variables 30 -- 9. The decomposition of a stochastic process -- 10. The total variation of a process -- 11. Convergence of martingales -- 12. Fluctuations of martingales -- 13. Discontinuities of martingales -- 14. The Lindeberg condition -- 15. The maximum of a martingale -- 16. The law of large numbers -- 17. Nearly equivalent stochastic processes -- 18. The de Moivre-Laplace-Lindeberg-Feller-Wiener- Lévy-Doob-Erdös-Kac-Donsker-Prokhorov theorem -- Appendix -- Index |
Record Nr. | UNINA-9910154754503321 |
Nelson Edward | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|