Interactions with Lattice Polytopes : Magdeburg, Germany, September 2017 / Alexander M. Kasprzyk, Benjamin Nill |
Pubbl/distr/stampa | Cham, : Springer, 2022 |
Descrizione fisica | x, 364 p. : ill. ; 24 cm |
Soggetto topico |
13-XX - Commutative algebra [MSC 2020]
13F55 - Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes [MSC 2020] 13F65 - Commutative rings defined by binomial ideals, toric rings, etc. [MSC 2020] 14-XX - Algebraic geometry [MSC 2020] 14M25 - Toric varieties, Newton polyhedra, Okounkov bodies [MSC 2020] 52-XX - Convex and discrete geometry [MSC 2020] 52B20 - Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry) [MSC 2020] |
Soggetto non controllato |
Convex body
Delzant Ehrhard polynomials Flag matroid Newton-Okounkov body Optimization Seshadri constant Symplectic toric manifolds Toric Fano variety Toric degeneration Toric variety |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0277667 |
Cham, : Springer, 2022 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Interactions with Lattice Polytopes : Magdeburg, Germany, September 2017 / Alexander M. Kasprzyk, Benjamin Nill |
Pubbl/distr/stampa | Cham, : Springer, 2022 |
Descrizione fisica | x, 364 p. : ill. ; 24 cm |
Soggetto topico |
13-XX - Commutative algebra [MSC 2020]
13F55 - Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes [MSC 2020] 13F65 - Commutative rings defined by binomial ideals, toric rings, etc. [MSC 2020] 14-XX - Algebraic geometry [MSC 2020] 14M25 - Toric varieties, Newton polyhedra, Okounkov bodies [MSC 2020] 52-XX - Convex and discrete geometry [MSC 2020] 52B20 - Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry) [MSC 2020] |
Soggetto non controllato |
Convex body
Delzant Ehrhard polynomials Flag matroid Newton-Okounkov body Optimization Seshadri constant Symplectic toric manifolds Toric Fano variety Toric degeneration Toric variety |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00277667 |
Cham, : Springer, 2022 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Introduction to Toric Varieties. (AM-131), Volume 131 / / William Fulton |
Autore | Fulton William |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (171 pages) : illustrations |
Disciplina | 516.3/53 |
Collana | Annals of Mathematics Studies |
Soggetto topico | Toric varieties |
Soggetto non controllato |
Addition
Affine plane Affine space Affine variety Alexander Grothendieck Alexander duality Algebraic curve Algebraic group Atiyah–Singer index theorem Automorphism Betti number Big O notation Characteristic class Chern class Chow group Codimension Cohomology Combinatorics Commutative property Complete intersection Convex polytope Convex set Coprime integers Cotangent space Dedekind sum Dimension (vector space) Dimension Direct proof Discrete valuation ring Discrete valuation Disjoint union Divisor (algebraic geometry) Divisor Dual basis Dual space Equation Equivalence class Equivariant K-theory Euler characteristic Exact sequence Explicit formula Facet (geometry) Fundamental group Graded ring Grassmannian H-vector Hirzebruch surface Hodge theory Homogeneous coordinates Homomorphism Hypersurface Intersection theory Invertible matrix Invertible sheaf Isoperimetric inequality Lattice (group) Leray spectral sequence Limit point Line bundle Line segment Linear subspace Local ring Mathematical induction Mixed volume Moduli space Moment map Monotonic function Natural number Newton polygon Open set Picard group Pick's theorem Polytope Projective space Quadric Quotient space (topology) Regular sequence Relative interior Resolution of singularities Restriction (mathematics) Resultant Riemann–Roch theorem Serre duality Sign (mathematics) Simplex Simplicial complex Simultaneous equations Spectral sequence Subgroup Subset Summation Surjective function Tangent bundle Theorem Topology Toric variety Unit disk Vector space Weil conjecture Zariski topology |
ISBN | 1-4008-8252-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Errata -- Chapter 1. Definitions and examples -- Chapter 2. Singularities and compactness -- Chapter 3. Orbits, topology, and line bundles -- Chapter 4. Moment maps and the tangent bundle -- Chapter 5. Intersection theory -- Notes -- References -- Index of Notation -- Index |
Record Nr. | UNINA-9910154749903321 |
Fulton William
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Lectures on resolution of singularities [[electronic resource] /] / János Kollár |
Autore | Kollár János |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, N.J., : Princeton University Press, 2007 |
Descrizione fisica | 1 online resource (215 p.) |
Disciplina | 516.3/5 |
Collana | Annals of mathematics studies |
Soggetto topico | Singularities (Mathematics) |
Soggetto non controllato |
Adjunction formula
Algebraic closure Algebraic geometry Algebraic space Algebraic surface Algebraic variety Approximation Asymptotic analysis Automorphism Bernhard Riemann Big O notation Birational geometry C0 Canonical singularity Codimension Cohomology Commutative algebra Complex analysis Complex manifold Computability Continuous function Coordinate system Diagram (category theory) Differential geometry of surfaces Dimension Divisor Du Val singularity Dual graph Embedding Equation Equivalence relation Euclidean algorithm Factorization Functor General position Generic point Geometric genus Geometry Hyperplane Hypersurface Integral domain Intersection (set theory) Intersection number (graph theory) Intersection theory Irreducible component Isolated singularity Laurent series Line bundle Linear space (geometry) Linear subspace Mathematical induction Mathematics Maximal ideal Morphism Newton polygon Noetherian ring Noetherian Open problem Open set P-adic number Pairwise Parametric equation Partial derivative Plane curve Polynomial Power series Principal ideal Principalization (algebra) Projective space Projective variety Proper morphism Puiseux series Quasi-projective variety Rational function Regular local ring Resolution of singularities Riemann surface Ring theory Ruler Scientific notation Sheaf (mathematics) Singularity theory Smooth morphism Smoothness Special case Subring Summation Surjective function Tangent cone Tangent space Tangent Taylor series Theorem Topology Toric variety Transversal (geometry) Variable (mathematics) Weierstrass preparation theorem Weierstrass theorem Zero set |
ISBN |
1-282-15774-4
9786612157745 1-4008-2780-9 |
Classificazione | SK 240 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- Chapter 1. Resolution for Curves -- Chapter 2. Resolution for Surfaces -- Chapter 3. Strong Resolution in Characteristic Zero -- Bibliography -- Index |
Record Nr. | UNINA-9910778222903321 |
Kollár János
![]() |
||
Princeton, N.J., : Princeton University Press, 2007 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|