Equational Compactness in Rings : With Applications to the Theory of Topological Rings / David K. Haley
| Equational Compactness in Rings : With Applications to the Theory of Topological Rings / David K. Haley |
| Autore | Haley, David K. |
| Pubbl/distr/stampa | Berlin, : Springer, 1979 |
| Descrizione fisica | iii, 167 p. ; 24 cm |
| Soggetto topico |
16-XX - Associative rings and algebras [MSC 2020]
16P10 - Finite rings and finite-dimensional associative algebras [MSC 2020] 13Jxx - Topological rings and modules [MSC 2020] 16P60 - Chain conditions on annihilators and summands: Goldie-type conditions, Krull dimension (associative rings and algebras) [MSC 2020] 03C60 - Model-theoretic algebra [MSC 2020] 13Lxx - Applications of logic to commutative algebra [MSC 2020] 16W80 - Topological and ordered rings and modules [MSC 2020] |
| Soggetto non controllato |
Compactification
Compactness Equations Frame Minimum Models Rings Topological rings |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0261163 |
Haley, David K.
|
||
| Berlin, : Springer, 1979 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Equational Compactness in Rings : With Applications to the Theory of Topological Rings / David K. Haley
| Equational Compactness in Rings : With Applications to the Theory of Topological Rings / David K. Haley |
| Autore | Haley, David K. |
| Pubbl/distr/stampa | Berlin, : Springer, 1979 |
| Descrizione fisica | iii, 167 p. ; 24 cm |
| Soggetto topico |
03C60 - Model-theoretic algebra [MSC 2020]
13Jxx - Topological rings and modules [MSC 2020] 13Lxx - Applications of logic to commutative algebra [MSC 2020] 16-XX - Associative rings and algebras [MSC 2020] 16P10 - Finite rings and finite-dimensional associative algebras [MSC 2020] 16P60 - Chain conditions on annihilators and summands: Goldie-type conditions, Krull dimension (associative rings and algebras) [MSC 2020] 16W80 - Topological and ordered rings and modules [MSC 2020] |
| Soggetto non controllato |
Compactifications
Compactness Equations Frame Minimum Models Rings Topological rings |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00261163 |
Haley, David K.
|
||
| Berlin, : Springer, 1979 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Mathematical Methods for Engineering Applications : ICMASE 2021, Salamanca, Spain, July 1–2 / Fatih Yilmaz ... [et al.] editors
| Mathematical Methods for Engineering Applications : ICMASE 2021, Salamanca, Spain, July 1–2 / Fatih Yilmaz ... [et al.] editors |
| Pubbl/distr/stampa | Cham, : Springer, 2022 |
| Descrizione fisica | xi, 319 p. : ill. ; 24 cm |
| Soggetto non controllato |
Biological Networks
Difference equations Fibonacci Sequences Fibonacci divisors Frobenius set Fuzzy topological spaces Linear algebra Mathematics Education Non-binary logic Number theory Numerical modeling Predator-prey model Sylvester sums Taylor expansion Topological rings |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0277841 |
| Cham, : Springer, 2022 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Mathematical Methods for Engineering Applications : ICMASE 2021, Salamanca, Spain, July 1–2 / Fatih Yilmaz ... [et al.] editors
| Mathematical Methods for Engineering Applications : ICMASE 2021, Salamanca, Spain, July 1–2 / Fatih Yilmaz ... [et al.] editors |
| Pubbl/distr/stampa | Cham, : Springer, 2022 |
| Descrizione fisica | xi, 319 p. : ill. ; 24 cm |
| Soggetto non controllato |
Biological Networks
Difference equations Fibonacci Sequences Fibonacci divisors Frobenius set Fuzzy topological spaces Linear algebra Mathematics Education Non-binary logic Number theory Numerical modeling Predator-prey model Sylvester sums Taylor expansion Topological rings |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00277841 |
| Cham, : Springer, 2022 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||