top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Euler systems / / by Karl Rubin
Euler systems / / by Karl Rubin
Autore Rubin Karl
Pubbl/distr/stampa Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000
Descrizione fisica 1 online resource (241 p.)
Disciplina 512/.74
Collana Annals of Mathematics Studies
Soggetto topico Algebraic number theory
p-adic numbers
Soggetto non controllato Abelian extension
Abelian variety
Absolute Galois group
Algebraic closure
Barry Mazur
Big O notation
Birch and Swinnerton-Dyer conjecture
Cardinality
Class field theory
Coefficient
Cohomology
Complex multiplication
Conjecture
Corollary
Cyclotomic field
Dimension (vector space)
Divisibility rule
Eigenvalues and eigenvectors
Elliptic curve
Error term
Euler product
Euler system
Exact sequence
Existential quantification
Field of fractions
Finite set
Functional equation
Galois cohomology
Galois group
Galois module
Gauss sum
Global field
Heegner point
Ideal class group
Integer
Inverse limit
Inverse system
Karl Rubin
Local field
Mathematical induction
Maximal ideal
Modular curve
Modular elliptic curve
Natural number
Orthogonality
P-adic number
Pairing
Principal ideal
R-factor (crystallography)
Ralph Greenberg
Remainder
Residue field
Ring of integers
Scientific notation
Selmer group
Subgroup
Tate module
Taylor series
Tensor product
Theorem
Upper and lower bounds
Victor Kolyvagin
ISBN 0-691-05075-9
1-4008-6520-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index
Record Nr. UNINA-9910786510103321
Rubin Karl  
Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Euler systems / / by Karl Rubin
Euler systems / / by Karl Rubin
Autore Rubin Karl
Pubbl/distr/stampa Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000
Descrizione fisica 1 online resource (241 p.)
Disciplina 512/.74
Collana Annals of Mathematics Studies
Soggetto topico Algebraic number theory
p-adic numbers
Soggetto non controllato Abelian extension
Abelian variety
Absolute Galois group
Algebraic closure
Barry Mazur
Big O notation
Birch and Swinnerton-Dyer conjecture
Cardinality
Class field theory
Coefficient
Cohomology
Complex multiplication
Conjecture
Corollary
Cyclotomic field
Dimension (vector space)
Divisibility rule
Eigenvalues and eigenvectors
Elliptic curve
Error term
Euler product
Euler system
Exact sequence
Existential quantification
Field of fractions
Finite set
Functional equation
Galois cohomology
Galois group
Galois module
Gauss sum
Global field
Heegner point
Ideal class group
Integer
Inverse limit
Inverse system
Karl Rubin
Local field
Mathematical induction
Maximal ideal
Modular curve
Modular elliptic curve
Natural number
Orthogonality
P-adic number
Pairing
Principal ideal
R-factor (crystallography)
Ralph Greenberg
Remainder
Residue field
Ring of integers
Scientific notation
Selmer group
Subgroup
Tate module
Taylor series
Tensor product
Theorem
Upper and lower bounds
Victor Kolyvagin
ISBN 0-691-05075-9
1-4008-6520-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index
Record Nr. UNINA-9910816804403321
Rubin Karl  
Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151), Volume 151 / / Richard Taylor, Michael Harris
The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151), Volume 151 / / Richard Taylor, Michael Harris
Autore Harris Michael
Pubbl/distr/stampa Princeton, NJ : , : Princeton University Press, , [2001]
Descrizione fisica 1 online resource (288 p.)
Disciplina 516.3/5
Collana Annals of Mathematics Studies
Soggetto topico Mathematics
Shimura varieties
MATHEMATICS / Number Theory
Soggetto non controllato Abelian variety
Absolute value
Algebraic group
Algebraically closed field
Artinian
Automorphic form
Base change
Bijection
Canonical map
Codimension
Coefficient
Cohomology
Compactification (mathematics)
Conjecture
Corollary
Dimension (vector space)
Dimension
Direct limit
Division algebra
Eigenvalues and eigenvectors
Elliptic curve
Embedding
Equivalence class
Equivalence of categories
Existence theorem
Field of fractions
Finite field
Function field
Functor
Galois cohomology
Galois group
Generic point
Geometry
Hasse invariant
Infinitesimal character
Integer
Inverse system
Isomorphism class
Lie algebra
Local class field theory
Maximal torus
Modular curve
Moduli space
Monic polynomial
P-adic number
Prime number
Profinite group
Residue field
Ring of integers
Separable extension
Sheaf (mathematics)
Shimura variety
Simple group
Special case
Spectral sequence
Square root
Subset
Tate module
Theorem
Transcendence degree
Unitary group
Valuative criterion
Variable (mathematics)
Vector space
Weil group
Weil pairing
Zariski topology
ISBN 1-4008-3720-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Introduction -- Acknowledgements -- Chapter I. Preliminaries -- Chapter II. Barsotti-Tate groups -- Chapter III. Some simple Shimura varieties -- Chapter IV. Igusa varieties -- Chapter V. Counting Points -- Chapter VI. Automorphic forms -- Chapter VII. Applications -- Appendix. A result on vanishing cycles / Berkovich, V. G. -- Bibliography -- Index
Record Nr. UNINA-9910791960703321
Harris Michael  
Princeton, NJ : , : Princeton University Press, , [2001]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Period Spaces for p-divisible Groups (AM-141), Volume 141 / / Thomas Zink, Michael Rapoport
Period Spaces for p-divisible Groups (AM-141), Volume 141 / / Thomas Zink, Michael Rapoport
Autore Rapoport Michael
Pubbl/distr/stampa Princeton, NJ : , : Princeton University Press, , [2016]
Descrizione fisica 1 online resource (347 pages)
Disciplina 512.2
Collana Annals of Mathematics Studies
Soggetto topico p-divisible groups
Moduli theory
p-adic groups
Soggetto non controllato Abelian variety
Addition
Alexander Grothendieck
Algebraic closure
Algebraic number field
Algebraic space
Algebraically closed field
Artinian ring
Automorphism
Base change
Basis (linear algebra)
Big O notation
Bilinear form
Canonical map
Cohomology
Cokernel
Commutative algebra
Commutative ring
Complex multiplication
Conjecture
Covering space
Degenerate bilinear form
Diagram (category theory)
Dimension (vector space)
Dimension
Duality (mathematics)
Elementary function
Epimorphism
Equation
Existential quantification
Fiber bundle
Field of fractions
Finite field
Formal scheme
Functor
Galois group
General linear group
Geometric invariant theory
Hensel's lemma
Homomorphism
Initial and terminal objects
Inner automorphism
Integral domain
Irreducible component
Isogeny
Isomorphism class
Linear algebra
Linear algebraic group
Local ring
Local system
Mathematical induction
Maximal ideal
Maximal torus
Module (mathematics)
Moduli space
Monomorphism
Morita equivalence
Morphism
Multiplicative group
Noetherian ring
Open set
Orthogonal basis
Orthogonal complement
Orthonormal basis
P-adic number
Parity (mathematics)
Period mapping
Prime element
Prime number
Projective line
Projective space
Quaternion algebra
Reductive group
Residue field
Rigid analytic space
Semisimple algebra
Sheaf (mathematics)
Shimura variety
Special case
Subalgebra
Subgroup
Subset
Summation
Supersingular elliptic curve
Support (mathematics)
Surjective function
Symmetric bilinear form
Symmetric space
Tate module
Tensor algebra
Tensor product
Theorem
Topological ring
Topology
Torsor (algebraic geometry)
Uniformization theorem
Uniformization
Unitary group
Weil group
Zariski topology
ISBN 1-4008-8260-5
Classificazione SI 830
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Introduction -- 1. p-adic symmetric domains -- 2. Quasi-isogenies of p-divisible groups -- 3. Moduli spaces of p-divisible groups -- Appendix: Normal forms of lattice chains -- 4. The formal Hecke correspondences -- 5. The period morphism and the rigid-analytic coverings -- 6. The p-adic uniformization of Shimura varieties -- Bibliography -- Index
Record Nr. UNINA-9910154754603321
Rapoport Michael  
Princeton, NJ : , : Princeton University Press, , [2016]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui