Euler systems / / by Karl Rubin |
Autore | Rubin Karl |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 |
Descrizione fisica | 1 online resource (241 p.) |
Disciplina | 512/.74 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Algebraic number theory
p-adic numbers |
Soggetto non controllato |
Abelian extension
Abelian variety Absolute Galois group Algebraic closure Barry Mazur Big O notation Birch and Swinnerton-Dyer conjecture Cardinality Class field theory Coefficient Cohomology Complex multiplication Conjecture Corollary Cyclotomic field Dimension (vector space) Divisibility rule Eigenvalues and eigenvectors Elliptic curve Error term Euler product Euler system Exact sequence Existential quantification Field of fractions Finite set Functional equation Galois cohomology Galois group Galois module Gauss sum Global field Heegner point Ideal class group Integer Inverse limit Inverse system Karl Rubin Local field Mathematical induction Maximal ideal Modular curve Modular elliptic curve Natural number Orthogonality P-adic number Pairing Principal ideal R-factor (crystallography) Ralph Greenberg Remainder Residue field Ring of integers Scientific notation Selmer group Subgroup Tate module Taylor series Tensor product Theorem Upper and lower bounds Victor Kolyvagin |
ISBN |
0-691-05075-9
1-4008-6520-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index |
Record Nr. | UNINA-9910786510103321 |
Rubin Karl
![]() |
||
Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Euler systems / / by Karl Rubin |
Autore | Rubin Karl |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 |
Descrizione fisica | 1 online resource (241 p.) |
Disciplina | 512/.74 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Algebraic number theory
p-adic numbers |
Soggetto non controllato |
Abelian extension
Abelian variety Absolute Galois group Algebraic closure Barry Mazur Big O notation Birch and Swinnerton-Dyer conjecture Cardinality Class field theory Coefficient Cohomology Complex multiplication Conjecture Corollary Cyclotomic field Dimension (vector space) Divisibility rule Eigenvalues and eigenvectors Elliptic curve Error term Euler product Euler system Exact sequence Existential quantification Field of fractions Finite set Functional equation Galois cohomology Galois group Galois module Gauss sum Global field Heegner point Ideal class group Integer Inverse limit Inverse system Karl Rubin Local field Mathematical induction Maximal ideal Modular curve Modular elliptic curve Natural number Orthogonality P-adic number Pairing Principal ideal R-factor (crystallography) Ralph Greenberg Remainder Residue field Ring of integers Scientific notation Selmer group Subgroup Tate module Taylor series Tensor product Theorem Upper and lower bounds Victor Kolyvagin |
ISBN |
0-691-05075-9
1-4008-6520-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index |
Record Nr. | UNINA-9910816804403321 |
Rubin Karl
![]() |
||
Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151), Volume 151 / / Richard Taylor, Michael Harris |
Autore | Harris Michael |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2001] |
Descrizione fisica | 1 online resource (288 p.) |
Disciplina | 516.3/5 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Mathematics
Shimura varieties MATHEMATICS / Number Theory |
Soggetto non controllato |
Abelian variety
Absolute value Algebraic group Algebraically closed field Artinian Automorphic form Base change Bijection Canonical map Codimension Coefficient Cohomology Compactification (mathematics) Conjecture Corollary Dimension (vector space) Dimension Direct limit Division algebra Eigenvalues and eigenvectors Elliptic curve Embedding Equivalence class Equivalence of categories Existence theorem Field of fractions Finite field Function field Functor Galois cohomology Galois group Generic point Geometry Hasse invariant Infinitesimal character Integer Inverse system Isomorphism class Lie algebra Local class field theory Maximal torus Modular curve Moduli space Monic polynomial P-adic number Prime number Profinite group Residue field Ring of integers Separable extension Sheaf (mathematics) Shimura variety Simple group Special case Spectral sequence Square root Subset Tate module Theorem Transcendence degree Unitary group Valuative criterion Variable (mathematics) Vector space Weil group Weil pairing Zariski topology |
ISBN | 1-4008-3720-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- Acknowledgements -- Chapter I. Preliminaries -- Chapter II. Barsotti-Tate groups -- Chapter III. Some simple Shimura varieties -- Chapter IV. Igusa varieties -- Chapter V. Counting Points -- Chapter VI. Automorphic forms -- Chapter VII. Applications -- Appendix. A result on vanishing cycles / Berkovich, V. G. -- Bibliography -- Index |
Record Nr. | UNINA-9910791960703321 |
Harris Michael
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2001] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Period Spaces for p-divisible Groups (AM-141), Volume 141 / / Thomas Zink, Michael Rapoport |
Autore | Rapoport Michael |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (347 pages) |
Disciplina | 512.2 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
p-divisible groups
Moduli theory p-adic groups |
Soggetto non controllato |
Abelian variety
Addition Alexander Grothendieck Algebraic closure Algebraic number field Algebraic space Algebraically closed field Artinian ring Automorphism Base change Basis (linear algebra) Big O notation Bilinear form Canonical map Cohomology Cokernel Commutative algebra Commutative ring Complex multiplication Conjecture Covering space Degenerate bilinear form Diagram (category theory) Dimension (vector space) Dimension Duality (mathematics) Elementary function Epimorphism Equation Existential quantification Fiber bundle Field of fractions Finite field Formal scheme Functor Galois group General linear group Geometric invariant theory Hensel's lemma Homomorphism Initial and terminal objects Inner automorphism Integral domain Irreducible component Isogeny Isomorphism class Linear algebra Linear algebraic group Local ring Local system Mathematical induction Maximal ideal Maximal torus Module (mathematics) Moduli space Monomorphism Morita equivalence Morphism Multiplicative group Noetherian ring Open set Orthogonal basis Orthogonal complement Orthonormal basis P-adic number Parity (mathematics) Period mapping Prime element Prime number Projective line Projective space Quaternion algebra Reductive group Residue field Rigid analytic space Semisimple algebra Sheaf (mathematics) Shimura variety Special case Subalgebra Subgroup Subset Summation Supersingular elliptic curve Support (mathematics) Surjective function Symmetric bilinear form Symmetric space Tate module Tensor algebra Tensor product Theorem Topological ring Topology Torsor (algebraic geometry) Uniformization theorem Uniformization Unitary group Weil group Zariski topology |
ISBN | 1-4008-8260-5 |
Classificazione | SI 830 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- 1. p-adic symmetric domains -- 2. Quasi-isogenies of p-divisible groups -- 3. Moduli spaces of p-divisible groups -- Appendix: Normal forms of lattice chains -- 4. The formal Hecke correspondences -- 5. The period morphism and the rigid-analytic coverings -- 6. The p-adic uniformization of Shimura varieties -- Bibliography -- Index |
Record Nr. | UNINA-9910154754603321 |
Rapoport Michael
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|