top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The hypoelliptic Laplacian and Ray-Singer metrics [[electronic resource] /] / Jean-Michel Bismut, Gilles Lebeau
The hypoelliptic Laplacian and Ray-Singer metrics [[electronic resource] /] / Jean-Michel Bismut, Gilles Lebeau
Autore Bismut Jean-Michel
Edizione [Course Book]
Pubbl/distr/stampa Princeton, : Princeton University Press, 2008
Descrizione fisica 1 online resource (378 p.)
Disciplina 515/.7242
Altri autori (Persone) LebeauGilles
Collana Annals of mathematics studies
Soggetto topico Differential equations, Hypoelliptic
Laplacian operator
Metric spaces
Soggetto non controllato Alexander Grothendieck
Analytic function
Asymptote
Asymptotic expansion
Berezin integral
Bijection
Brownian dynamics
Brownian motion
Chaos theory
Chern class
Classical Wiener space
Clifford algebra
Cohomology
Combination
Commutator
Computation
Connection form
Coordinate system
Cotangent bundle
Covariance matrix
Curvature tensor
Curvature
De Rham cohomology
Derivative
Determinant
Differentiable manifold
Differential operator
Dirac operator
Direct proof
Eigenform
Eigenvalues and eigenvectors
Ellipse
Embedding
Equation
Estimation
Euclidean space
Explicit formula
Explicit formulae (L-function)
Feynman–Kac formula
Fiber bundle
Fokker–Planck equation
Formal power series
Fourier series
Fourier transform
Fredholm determinant
Function space
Girsanov theorem
Ground state
Heat kernel
Hilbert space
Hodge theory
Holomorphic function
Holomorphic vector bundle
Hypoelliptic operator
Integration by parts
Invertible matrix
Logarithm
Malliavin calculus
Martingale (probability theory)
Matrix calculus
Mellin transform
Morse theory
Notation
Parameter
Parametrix
Parity (mathematics)
Polynomial
Principal bundle
Probabilistic method
Projection (linear algebra)
Rectangle
Resolvent set
Ricci curvature
Riemann–Roch theorem
Scientific notation
Self-adjoint operator
Self-adjoint
Sign convention
Smoothness
Sobolev space
Spectral theory
Square root
Stochastic calculus
Stochastic process
Summation
Supertrace
Symmetric space
Tangent space
Taylor series
Theorem
Theory
Torus
Trace class
Translational symmetry
Transversality (mathematics)
Uniform convergence
Variable (mathematics)
Vector bundle
Vector space
Wave equation
ISBN 1-282-45837-X
9786612458378
1-4008-2906-2
Classificazione SK 620
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Introduction -- Chapter 1. Elliptic Riemann-Roch-Grothendieck and flat vector bundles -- Chapter 2. The hypoelliptic Laplacian on the cotangent bundle -- Chapter 3. Hodge theory, the hypoelliptic Laplacian and its heat kernel -- Chapter 4. Hypoelliptic Laplacians and odd Chern forms -- Chapter 5. The limit as t → +∞ and b → 0 of the superconnection forms -- Chapter 6. Hypoelliptic torsion and the hypoelliptic Ray-Singer metrics -- Chapter 7. The hypoelliptic torsion forms of a vector bundle -- Chapter 8. Hypoelliptic and elliptic torsions: a comparison formula -- Chapter 9. A comparison formula for the Ray-Singer metrics -- Chapter 10. The harmonic forms for b → 0 and the formal Hodge theorem -- Chapter 11. A proof of equation (8.4.6) -- Chapter 12. A proof of equation (8.4.8) -- Chapter 13. A proof of equation (8.4.7) -- Chapter 14. The integration by parts formula -- Chapter 15. The hypoelliptic estimates -- Chapter 16. Harmonic oscillator and the J0 function -- Chapter 17. The limit of A'2φb,±H as b → 0 -- Bibliography -- Subject Index -- Index of Notation
Record Nr. UNINA-9910781084803321
Bismut Jean-Michel  
Princeton, : Princeton University Press, 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127), Volume 127 / / Gerd Faltings
Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127), Volume 127 / / Gerd Faltings
Autore Faltings Gerd
Pubbl/distr/stampa Princeton, NJ : , : Princeton University Press, , [2016]
Descrizione fisica 1 online resource (113 pages)
Disciplina 516.3/5
Altri autori (Persone) ZhangShouwu
Collana Annals of Mathematics Studies
Soggetto topico Geometry, Algebraic
Riemann-Roch theorems
Soggetto non controllato Addition
Adjoint
Alexander Grothendieck
Algebraic geometry
Analytic torsion
Arakelov theory
Asymptote
Asymptotic expansion
Asymptotic formula
Big O notation
Cartesian coordinate system
Characteristic class
Chern class
Chow group
Closed immersion
Codimension
Coherent sheaf
Cohomology
Combination
Commutator
Computation
Covariant derivative
Curvature
Derivative
Determinant
Diagonal
Differentiable manifold
Differential form
Dimension (vector space)
Divisor
Domain of a function
Dual basis
E6 (mathematics)
Eigenvalues and eigenvectors
Embedding
Endomorphism
Exact sequence
Exponential function
Generic point
Heat kernel
Injective function
Intersection theory
K-group
Levi-Civita connection
Line bundle
Linear algebra
Local coordinates
Mathematical induction
Morphism
Natural number
Neighbourhood (mathematics)
Parameter
Projective space
Pullback (category theory)
Pullback (differential geometry)
Pullback
Riemannian manifold
Riemann–Roch theorem
Self-adjoint operator
Smoothness
Sobolev space
Stochastic calculus
Summation
Supertrace
Theorem
Transition function
Upper half-plane
Vector bundle
Volume form
ISBN 1-4008-8247-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- LIST OF SYMBOLS -- LECTURE 1. CLASSICAL RIEMANN-ROCH THEOREM -- LECTURE 2. CHERN CLASSES OF ARITHMETIC VECTOR BUNDLES -- LECTURE 3. LAPLACIANS AND HEAT KERNELS -- LECTURE 4. THE LOCAL INDEX THEOREM FOR DIRAC OPERATORS -- LECTURE 5. NUMBER OPERATORS AND DIRECT IMAGES -- LECTURE 6. ARITHMETIC RIEMANN-ROCH THEOREM -- LECTURE 7. THE THEOREM OF BISMUT-VASSEROT -- REFERENCES
Record Nr. UNINA-9910154744103321
Faltings Gerd  
Princeton, NJ : , : Princeton University Press, , [2016]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui