top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Generalized principal component analysis / René Vidal, Yi Ma, S. Shankar Sastry
Generalized principal component analysis / René Vidal, Yi Ma, S. Shankar Sastry
Autore Vidal, René
Pubbl/distr/stampa New York, : Springer, 2016
Descrizione fisica XXXII, 566 p. : ill. ; 24 cm
Altri autori (Persone) Ma, Yi
Sastry, S. Shankar
Soggetto topico 14-XX - Algebraic geometry [MSC 2020]
15-XX - Linear and multilinear algebra; matrix theory [MSC 2020]
62B10 - Statistical aspects of information-theoretic topics [MSC 2020]
62H12 - Estimation in multivariate analysis [MSC 2020]
62-XX - Statistics [MSC 2020]
62J05 - Linear regression; mixed models [MSC 2020]
30C10 - Polynomials and rational functions of one complex variable [MSC 2020]
62H35 - Image analysis in multivariate analysis [MSC 2020]
62H25 - Factor analysis and principal components; correspondence analysis [MSC 2020]
62Jxx - Linear inference, regression [MSC 2020]
62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020]
62Fxx - Parametric inference [MSC 2020]
30C40 - Kernel functions in one complex variable and applications [MSC 2020]
14N20 - Configurations and arrangements of linear subspaces [MSC 2020]
Soggetto non controllato Hybrid system identification
Image and video segmentation
Linear subspace models
Low-rank matrix theory
Manifold learning
Principal component analysis
Robust principal component analysis
Sparse representation theory
Spectral clustering
Subspace arrangements
Subspace clustering
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0114796
Vidal, René  
New York, : Springer, 2016
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Generalized principal component analysis / René Vidal, Yi Ma, S. Shankar Sastry
Generalized principal component analysis / René Vidal, Yi Ma, S. Shankar Sastry
Autore Vidal, René
Pubbl/distr/stampa New York, : Springer, 2016
Descrizione fisica XXXII, 566 p. : ill. ; 24 cm
Altri autori (Persone) Ma, Yi
Sastry, S. Shankar
Soggetto topico 14-XX - Algebraic geometry [MSC 2020]
14N20 - Configurations and arrangements of linear subspaces [MSC 2020]
15-XX - Linear and multilinear algebra; matrix theory [MSC 2020]
30C10 - Polynomials and rational functions of one complex variable [MSC 2020]
30C40 - Kernel functions in one complex variable and applications [MSC 2020]
62-XX - Statistics [MSC 2020]
62B10 - Statistical aspects of information-theoretic topics [MSC 2020]
62Fxx - Parametric inference [MSC 2020]
62H12 - Estimation in multivariate analysis [MSC 2020]
62H25 - Factor analysis and principal components; correspondence analysis [MSC 2020]
62H35 - Image analysis in multivariate analysis [MSC 2020]
62J05 - Linear regression; mixed models [MSC 2020]
62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020]
62Jxx - Linear inference, regression [MSC 2020]
Soggetto non controllato Hybrid system identification
Image and video segmentation
Linear subspace models
Low-rank matrix theory
Manifold learning
Principal component analysis
Robust principal component analysis
Sparse representation theory
Spectral clustering
Subspace arrangements
Subspace clustering
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00114796
Vidal, René  
New York, : Springer, 2016
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui