top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
General Pontryagin-type stochastic maximum principle and backward stochastic evolution equations in infinite dimensions / Qi Lü, Xu Zhang
General Pontryagin-type stochastic maximum principle and backward stochastic evolution equations in infinite dimensions / Qi Lü, Xu Zhang
Autore Lü, Qi
Pubbl/distr/stampa Cham, : Springer, 2014
Descrizione fisica IX, 146 p. ; 24 cm
Altri autori (Persone) Zhang, Xu
Soggetto topico 93E20 - Optimal stochastic control [MSC 2020]
60H10 - Stochastic ordinary differential equations [MSC 2020]
60H15 - Stochastic partial differential equations (aspects of stochastic analysis) [MSC 2020]
49J55 - Existence of optimal solutions to problems involving randomness [MSC 2020]
49K45 - Optimality conditions for problems involving randomness [MSC 2020]
Soggetto non controllato Backward stochastics evolution equation
Optimal Control
Pontryagin-type maximum principle
Quantitative Finance
Stochastic Evolution Equations
Transportation solution
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0103455
Lü, Qi  
Cham, : Springer, 2014
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
General Pontryagin-type stochastic maximum principle and backward stochastic evolution equations in infinite dimensions / Qi Lü, Xu Zhang
General Pontryagin-type stochastic maximum principle and backward stochastic evolution equations in infinite dimensions / Qi Lü, Xu Zhang
Autore Lü, Qi
Pubbl/distr/stampa Cham, : Springer, 2014
Descrizione fisica IX, 146 p. ; 24 cm
Altri autori (Persone) Zhang, Xu
Soggetto topico 49J55 - Existence of optimal solutions to problems involving randomness [MSC 2020]
49K45 - Optimality conditions for problems involving randomness [MSC 2020]
60H10 - Stochastic ordinary differential equations [MSC 2020]
60H15 - Stochastic partial differential equations (aspects of stochastic analysis) [MSC 2020]
93E20 - Optimal stochastic control [MSC 2020]
Soggetto non controllato Backward stochastics evolution equation
Optimal Control
Pontryagin-type maximum principle
Quantitative Finance
Stochastic Evolution Equations
Transportation solution
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00103455
Lü, Qi  
Cham, : Springer, 2014
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Stochastic partial differential equations: an introduction / Wei Liu, Michael Röckner
Stochastic partial differential equations: an introduction / Wei Liu, Michael Röckner
Autore Liu, Wei
Pubbl/distr/stampa [Cham], : Springer, 2015
Descrizione fisica VI, 266 p. : ill. ; 24 cm
Altri autori (Persone) Röckner, Michael
Soggetto topico 47-XX - Operator theory [MSC 2020]
47J35 - Nonlinear evolution equations [MSC 2020]
35-XX - Partial differential equations [MSC 2020]
60J25 - Continuous-time Markov processes on general state spaces [MSC 2020]
60H05 - Stochastic integrals [MSC 2020]
60-XX - Probability theory and stochastic processes [MSC 2020]
60H10 - Stochastic ordinary differential equations [MSC 2020]
34-XX - Ordinary differential equations [MSC 2020]
60J60 - Diffusion processes [MSC 2020]
60H15 - Stochastic partial differential equations (aspects of stochastic analysis) [MSC 2020]
35Q35 - PDEs in connection with fluid mechanics [MSC 2020]
34G20 - Nonlinear differential equations in abstract spaces [MSC 2020]
34Fxx - Ordinary differential equations and systems with randomness [MSC 2020]
35K58 - Semilinear parabolic equations [MSC 2020]
35K59 - Quasilinear parabolic equations [MSC 2020]
Soggetto non controllato Explosive Solutions
Gelfand Triples
Generalized Coercivity
Girsanov Theorem on Hilbert
Invariant measures
Itô-Formula
Locally Monotone Coefficients
Markov property
Ordinary differential equations
Partial differential equations
Stochastic 2D and 3D Navier-Stokes Equation
Stochastic Cahn-Hilliard Equations
Stochastic Evolution Equations
Stochastic Partial Differential Equations
Stochastic Porous Media Equations
Stochastic Surface Growth Models
Stochastic integration in Hilbert spaces
Stochastic p-Laplace Equations
Variational approach
Weak and strong solutions
Yamada-Watanabe Theorem in Infinite Dimensions
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0113731
Liu, Wei  
[Cham], : Springer, 2015
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Stochastic partial differential equations: an introduction / Wei Liu, Michael Röckner
Stochastic partial differential equations: an introduction / Wei Liu, Michael Röckner
Autore Liu, Wei
Pubbl/distr/stampa [Cham], : Springer, 2015
Descrizione fisica VI, 266 p. : ill. ; 24 cm
Altri autori (Persone) Röckner, Michael
Soggetto topico 34-XX - Ordinary differential equations [MSC 2020]
34Fxx - Ordinary differential equations and systems with randomness [MSC 2020]
34G20 - Nonlinear differential equations in abstract spaces [MSC 2020]
35-XX - Partial differential equations [MSC 2020]
35K58 - Semilinear parabolic equations [MSC 2020]
35K59 - Quasilinear parabolic equations [MSC 2020]
35Q35 - PDEs in connection with fluid mechanics [MSC 2020]
47-XX - Operator theory [MSC 2020]
47J35 - Nonlinear evolution equations [MSC 2020]
60-XX - Probability theory and stochastic processes [MSC 2020]
60H05 - Stochastic integrals [MSC 2020]
60H10 - Stochastic ordinary differential equations [MSC 2020]
60H15 - Stochastic partial differential equations (aspects of stochastic analysis) [MSC 2020]
60J25 - Continuous-time Markov processes on general state spaces [MSC 2020]
60J60 - Diffusion processes [MSC 2020]
Soggetto non controllato Explosive Solutions
Gelfand Triples
Generalized Coercivity
Girsanov Theorem on Hilbert
Invariant measures
Itô-Formula
Locally Monotone Coefficients
Markov property
Ordinary Differential Equations
Partial Differential Equations
Stochastic 2D and 3D Navier-Stokes Equation
Stochastic Cahn-Hilliard Equations
Stochastic Evolution Equations
Stochastic Partial Differential Equations
Stochastic Porous Media Equations
Stochastic Surface Growth Models
Stochastic integration in Hilbert spaces
Stochastic p-Laplace Equations
Variational approach
Weak and strong solutions
Yamada-Watanabe Theorem in Infinite Dimensions
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00113731
Liu, Wei  
[Cham], : Springer, 2015
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui