C-Algebra Extensions and K-Homology. (AM-95), Volume 95 / / Ronald G. Douglas |
Autore | Douglas Ronald G. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (94 pages) : illustrations |
Disciplina | 512/.55 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
C*-algebras
K-theory Algebra, Homological |
Soggetto non controllato |
Addition
Affine transformation Algebraic topology Atiyah–Singer index theorem Automorphism Banach algebra Bijection Boundary value problem Bundle map C*-algebra Calculation Cardinal number Category of abelian groups Characteristic class Chern class Clifford algebra Coefficient Cohomology Compact operator Completely positive map Contact geometry Continuous function Corollary Diagram (category theory) Diffeomorphism Differentiable manifold Differential operator Dimension (vector space) Dimension function Dimension Direct integral Direct proof Eigenvalues and eigenvectors Equivalence class Equivalence relation Essential spectrum Euler class Exact sequence Existential quantification Fiber bundle Finite group Fredholm operator Fredholm Free abelian group Fundamental class Fundamental group Hardy space Hermann Weyl Hilbert space Homological algebra Homology (mathematics) Homomorphism Homotopy Ideal (ring theory) Inner automorphism Irreducible representation K-group K-theory Lebesgue space Locally compact group Maximal compact subgroup Michael Atiyah Monomorphism Morphism Natural number Natural transformation Normal operator Operator algebra Operator norm Operator theory Orthogonal group Pairing Piecewise linear manifold Polynomial Pontryagin class Positive and negative parts Positive map Pseudo-differential operator Quaternion Quotient algebra Self-adjoint operator Self-adjoint Simply connected space Smooth structure Special case Stein manifold Strong topology Subalgebra Subgroup Subset Summation Tangent bundle Theorem Todd class Topology Torsion subgroup Unitary operator Universal coefficient theorem Variable (mathematics) Von Neumann algebra |
ISBN | 1-4008-8146-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Chapter 1. An Overview -- Chapter 2. Ext as a Group -- Chapter 3. Ext as a Homotopy Functor -- Chapter 4. Generalized Homology Theory and Periodicity -- Chapter 5. Ext as K-Homology -- Chapter 6. Index Theorems snd Novikov's Higher Signatures -- References -- Index -- Index of Symbols -- Backmatter |
Record Nr. | UNINA-9910154752903321 |
Douglas Ronald G. | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Stein Manifolds and Holomorphic Mappings : The Homotopy Principle in Complex Analysis / Franc Forstnerič |
Autore | Forstnerič, Franc |
Edizione | [2. ed] |
Pubbl/distr/stampa | Cham, : Springer, 2017 |
Descrizione fisica | xiv, 562 p. : ill. ; 24 cm |
Soggetto topico |
32E10 - Stein spaces, Stein manifolds [MSC 2020]
32H02 - Holomorphic mappings, (holomorphic) embeddings and related questions in several complex variables [MSC 2020] 32M17 - Automorphism groups of ${\bf C}^n$ and affine manifolds [MSC 2020] 32Lxx - Holomorphic fiber spaces [MSC 2020] 32M12 - Almost homogeneous manifolds and spaces [MSC 2020] |
Soggetto non controllato |
Complex manifolds flexibility properties
Elliptic manifold Holomorphic automorphism Holomorphic fibre bundle Holomorphic map Holomorphic maps flexibility properties Holomorphic spray Homotopy equivalence Homotopy principle Oka manifold Oka theory applications Oka-Grauert principle Stein geometry topological methods Stein manifold Stein neighborhoods Stein spaces |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0123940 |
Forstnerič, Franc | ||
Cham, : Springer, 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Stein Manifolds and Holomorphic Mappings : The Homotopy Principle in Complex Analysis / Franc Forstnerič |
Autore | Forstnerič, Franc |
Edizione | [2. ed] |
Pubbl/distr/stampa | Cham, : Springer, 2017 |
Descrizione fisica | xiv, 562 p. : ill. ; 24 cm |
Soggetto topico |
32E10 - Stein spaces, Stein manifolds [MSC 2020]
32H02 - Holomorphic mappings, (holomorphic) embeddings and related questions in several complex variables [MSC 2020] 32Lxx - Holomorphic fiber spaces [MSC 2020] 32M12 - Almost homogeneous manifolds and spaces [MSC 2020] 32M17 - Automorphism groups of ${\bf C}^n$ and affine manifolds [MSC 2020] |
Soggetto non controllato |
Complex manifolds flexibility properties
Elliptic manifold Holomorphic automorphism Holomorphic fibre bundle Holomorphic map Holomorphic maps flexibility properties Holomorphic spray Homotopy equivalence Homotopy principle Oka manifold Oka theory applications Oka-Grauert principle Stein geometry topological methods Stein manifold Stein neighborhoods Stein spaces |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00123940 |
Forstnerič, Franc | ||
Cham, : Springer, 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|