An Introduction to Sequential Monte Carlo / Nicolas Chopin, Omiros Papaspiliopoulos
| An Introduction to Sequential Monte Carlo / Nicolas Chopin, Omiros Papaspiliopoulos |
| Autore | Chopin, Nicolas |
| Pubbl/distr/stampa | Cham, : Springer, 2020 |
| Descrizione fisica | xxvi, 559 p. : ill. ; 24 cm |
| Altri autori (Persone) | Papaspiliopoulos, Omiros |
| Soggetto topico |
65C05 - Monte Carlo methods [MSC 2020]
62-XX - Statistics [MSC 2020] 62M05 - Markov processes: estimation; hidden Markov models [MSC 2020] 62L12 - Sequential estimation [MSC 2020] |
| Soggetto non controllato |
Bayesian Inference
Data-driven science, modeling and theory building Feynman-Kac models Hidden Markov models Markov Chain Monte Carlo Particle filter Sequential Monte Carlo Sequential learning State-space models |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0248680 |
Chopin, Nicolas
|
||
| Cham, : Springer, 2020 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
An Introduction to Sequential Monte Carlo / Nicolas Chopin, Omiros Papaspiliopoulos
| An Introduction to Sequential Monte Carlo / Nicolas Chopin, Omiros Papaspiliopoulos |
| Autore | Chopin, Nicolas |
| Pubbl/distr/stampa | Cham, : Springer, 2020 |
| Descrizione fisica | xxvi, 559 p. : ill. ; 24 cm |
| Altri autori (Persone) | Papaspiliopoulos, Omiros |
| Soggetto topico |
62-XX - Statistics [MSC 2020]
62L12 - Sequential estimation [MSC 2020] 62M05 - Markov processes: estimation; hidden Markov models [MSC 2020] 65C05 - Monte Carlo methods [MSC 2020] |
| Soggetto non controllato |
Bayesian Inference
Data-driven science, modeling and theory building Feynman-Kac models Hidden Markov models Markov Chain Monte Carlo Particle filters Sequential Monte Carlo Sequential learning State-space models |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00248680 |
Chopin, Nicolas
|
||
| Cham, : Springer, 2020 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Applied Time Series Analysis and Forecasting with Python / Changquan Huang, Alla Petukhina
| Applied Time Series Analysis and Forecasting with Python / Changquan Huang, Alla Petukhina |
| Autore | Huang, Changquan |
| Pubbl/distr/stampa | Cham, : Springer, 2022 |
| Descrizione fisica | x, 372 p. : ill. ; 24 cm |
| Altri autori (Persone) | Petukhina, Alla |
| Soggetto non controllato |
Artificial Intelligence
Big data analysis Data Visualization Data science Financial Time Series Forecasting Machine Learning for Time Series Markov switching models Multivariate time series Nonstationary Time Series Python State-space models Stationary Time Series Time Series Analysis |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0276890 |
Huang, Changquan
|
||
| Cham, : Springer, 2022 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Applied Time Series Analysis and Forecasting with Python / Changquan Huang, Alla Petukhina
| Applied Time Series Analysis and Forecasting with Python / Changquan Huang, Alla Petukhina |
| Autore | Huang, Changquan |
| Pubbl/distr/stampa | Cham, : Springer, 2022 |
| Descrizione fisica | x, 372 p. : ill. ; 24 cm |
| Altri autori (Persone) | Petukhina, Alla |
| Soggetto topico |
62-XX - Statistics [MSC 2020]
62M10 - Time series, auto-correlation, regression, etc. in statistics (GARCH) [MSC 2020] |
| Soggetto non controllato |
Artificial Intelligence
Big data analysis Data Visualization Data science Financial Time Series Forecasting Machine Learning for Time Series Markov switching models Multivariate time series Nonstationary Time Series Python State-space models Stationary Time Series Time Series Analysis |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00276890 |
Huang, Changquan
|
||
| Cham, : Springer, 2022 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Assessing Complexity in Physiological Systems through Biomedical Signals Analysis
| Assessing Complexity in Physiological Systems through Biomedical Signals Analysis |
| Autore | Castiglioni Paolo |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (296 p.) |
| Soggetto topico |
Mathematics & science
Research & information: general |
| Soggetto non controllato |
aging in human population
Alzheimer's disease approximate entropy autonomic nervous function autonomic nervous system baroreflex baroreflex sensitivity (BRS) biomarker blood pressure brain brain dynamics brain functional networks brain signals cardiovascular system central autonomic network cognitive task complexity complexity analysis conditional transfer entropy correlation dimension cross-entropy data compression detrended fluctuation analysis digital volume pulse (DVP) dynamic functional connectivity ECG ectopic beat entropy event-related de/synchronization factor analysis fetal heart rate fNIRS fractal dimension fragmentation fuzzy entropy heart rate heart rate variability heart rate variability (HRV) hypobaric hypoxia information dynamics information flow interconnectivity K-means clustering algorithm labor largest Lyapunov exponent linear prediction mental arithmetics motor imagery multifractality multiscale multiscale complexity multivariate time series analysis network physiology nonlinear analysis partial information decomposition penalized regression techniques percussion entropy index (PEI) photo-plethysmo-graphy (PPG) posture preterm recurrence quantification analysis refined composite multiscale entropy rehabilitation medicine relative consistency Sampen sample entropy self-organized criticality self-similarity sEMG single-channel analysis State-space models static functional connectivity support vector machines classification time series analysis vasovagal syncope vector autoregressive model vector quantization Zipf's law |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557601803321 |
Castiglioni Paolo
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bayesian Inference of State Space Models : Kalman Filtering and Beyond / Kostas Triantafyllopoulos
| Bayesian Inference of State Space Models : Kalman Filtering and Beyond / Kostas Triantafyllopoulos |
| Autore | Triantafyllopoulos, Kostas |
| Pubbl/distr/stampa | Cham, : Springer, 2021 |
| Descrizione fisica | xv, 495 p. : ill. ; 24 cm |
| Soggetto topico |
93E11 - Filtering in stochastic control theory [MSC 2020]
62-XX - Statistics [MSC 2020] 62F15 - Bayesian inference [MSC 2020] 62M10 - Time series, auto-correlation, regression, etc. in statistics (GARCH) [MSC 2020] 62P20 - Applications of statistics to economics [MSC 2020] 62P05 - Applications of statistics to actuarial sciences and financial mathematics [MSC 2020] 91B84 - Economic time series analysis [MSC 2020] 62P30 - Applications of statistics in engineering and industry; control charts [MSC 2020] 93E03 - Stochastic systems in control theory (general) [MSC 2020] 62M20 - Inference from stochastic processes and prediction; filtering [MSC 2020] |
| Soggetto non controllato |
Bayesian estimation
Bayesian forecasting Control theory Dynamic models Financial Time Series Non Gaussian time series Sequential Monte Carlo State space in dynamic systems State-space models Stochastic volatility Systems stability Volatility models |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0274587 |
Triantafyllopoulos, Kostas
|
||
| Cham, : Springer, 2021 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Bayesian Inference of State Space Models : Kalman Filtering and Beyond / Kostas Triantafyllopoulos
| Bayesian Inference of State Space Models : Kalman Filtering and Beyond / Kostas Triantafyllopoulos |
| Autore | Triantafyllopoulos, Kostas |
| Pubbl/distr/stampa | Cham, : Springer, 2021 |
| Descrizione fisica | xv, 495 p. : ill. ; 24 cm |
| Soggetto topico |
62-XX - Statistics [MSC 2020]
62F15 - Bayesian inference [MSC 2020] 62M10 - Time series, auto-correlation, regression, etc. in statistics (GARCH) [MSC 2020] 62M20 - Inference from stochastic processes and prediction; filtering [MSC 2020] 62P05 - Applications of statistics to actuarial sciences and financial mathematics [MSC 2020] 62P20 - Applications of statistics to economics [MSC 2020] 62P30 - Applications of statistics in engineering and industry; control charts [MSC 2020] 91B84 - Economic time series analysis [MSC 2020] 93E03 - Stochastic systems in control theory (general) [MSC 2020] 93E11 - Filtering in stochastic control theory [MSC 2020] |
| Soggetto non controllato |
Bayesian estimation
Bayesian forecasting Control theory Dynamic models Financial Time Series Non Gaussian time series Sequential Monte Carlo State space in dynamic systems State-space models Stochastic volatility Systems stability Volatility models |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00274587 |
Triantafyllopoulos, Kostas
|
||
| Cham, : Springer, 2021 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Capture-Recapture: Parameter Estimation for Open Animal Populations / George A. F. Seber, Matthew R. Schofield
| Capture-Recapture: Parameter Estimation for Open Animal Populations / George A. F. Seber, Matthew R. Schofield |
| Autore | Seber, George Arthur F. |
| Pubbl/distr/stampa | Cham, : Springer, 2019 |
| Descrizione fisica | xix, 663 p. : ill. ; 24 cm |
| Altri autori (Persone) | Schofield, Matthew R. |
| Soggetto topico |
62F10 - Point estimation [MSC 2020]
62Dxx - Statistical sampling theory and related topics [MSC 2020] 62P12 - Applications of statistics to environmental and related topics [MSC 2020] |
| Soggetto non controllato |
Acoustic tags
Animal migration Bayesian models Capture-mark-recapture Cormack-Jolly –Seber models GPS Genetic markers Monte Carlo Recapture Methods Ring recovery data State-space models Survival estimation Time series models |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0126757 |
Seber, George Arthur F.
|
||
| Cham, : Springer, 2019 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Capture-Recapture: Parameter Estimation for Open Animal Populations / George A. F. Seber, Matthew R. Schofield
| Capture-Recapture: Parameter Estimation for Open Animal Populations / George A. F. Seber, Matthew R. Schofield |
| Autore | Seber, George A. F. |
| Pubbl/distr/stampa | Cham, : Springer, 2019 |
| Descrizione fisica | xix, 663 p. : ill. ; 24 cm |
| Altri autori (Persone) | Schofield, Matthew R. |
| Soggetto topico |
62Dxx - Statistical sampling theory and related topics [MSC 2020]
62F10 - Point estimation [MSC 2020] 62P12 - Applications of statistics to environmental and related topics [MSC 2020] |
| Soggetto non controllato |
Acoustic tags
Animal migration Bayesian models Capture-mark-recapture Cormack-Jolly –Seber models GPS Genetic markers Monte Carlo Recapture Methods Ring recovery data State-space models Survival estimation Time series models |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00126757 |
Seber, George A. F.
|
||
| Cham, : Springer, 2019 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Estimating Presence and Abundance of Closed Populations / George A. F. Seber, Matthew R. Schofield
| Estimating Presence and Abundance of Closed Populations / George A. F. Seber, Matthew R. Schofield |
| Autore | Seber, George A. F. |
| Pubbl/distr/stampa | Cham, : Springer, 2023 |
| Descrizione fisica | xix, 723 p. : ill. ; 24 cm |
| Altri autori (Persone) | Schofield, Matthew R. |
| Soggetto topico |
62-XX - Statistics [MSC 2020]
62P12 - Applications of statistics to environmental and related topics [MSC 2020] 92D40 - Ecology [MSC 2020] |
| Soggetto non controllato |
Acoustic
Aerial surveys Animal migration Bayesian models Capture-recapture Capture-recapture methods Catch-effort Detectability Distance methods Line-intercept models Marine Occupancy Plot sampling Point and line transects Removal and CIR methods Spatial methods Species methods State-space models Survival estimation |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00278800 |
Seber, George A. F.
|
||
| Cham, : Springer, 2023 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||