top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
An Introduction to Sequential Monte Carlo / Nicolas Chopin, Omiros Papaspiliopoulos
An Introduction to Sequential Monte Carlo / Nicolas Chopin, Omiros Papaspiliopoulos
Autore Chopin, Nicolas
Pubbl/distr/stampa Cham, : Springer, 2020
Descrizione fisica xxvi, 559 p. : ill. ; 24 cm
Altri autori (Persone) Papaspiliopoulos, Omiros
Soggetto topico 65C05 - Monte Carlo methods [MSC 2020]
62-XX - Statistics [MSC 2020]
62M05 - Markov processes: estimation; hidden Markov models [MSC 2020]
62L12 - Sequential estimation [MSC 2020]
Soggetto non controllato Bayesian Inference
Data-driven science, modeling and theory building
Feynman-Kac models
Hidden Markov models
Markov Chain Monte Carlo
Particle filter
Sequential Monte Carlo
Sequential learning
State-space models
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0248680
Chopin, Nicolas  
Cham, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
An Introduction to Sequential Monte Carlo / Nicolas Chopin, Omiros Papaspiliopoulos
An Introduction to Sequential Monte Carlo / Nicolas Chopin, Omiros Papaspiliopoulos
Autore Chopin, Nicolas
Pubbl/distr/stampa Cham, : Springer, 2020
Descrizione fisica xxvi, 559 p. : ill. ; 24 cm
Altri autori (Persone) Papaspiliopoulos, Omiros
Soggetto topico 62-XX - Statistics [MSC 2020]
62L12 - Sequential estimation [MSC 2020]
62M05 - Markov processes: estimation; hidden Markov models [MSC 2020]
65C05 - Monte Carlo methods [MSC 2020]
Soggetto non controllato Bayesian Inference
Data-driven science, modeling and theory building
Feynman-Kac models
Hidden Markov models
Markov Chain Monte Carlo
Particle filters
Sequential Monte Carlo
Sequential learning
State-space models
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00248680
Chopin, Nicolas  
Cham, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Applied Time Series Analysis and Forecasting with Python / Changquan Huang, Alla Petukhina
Applied Time Series Analysis and Forecasting with Python / Changquan Huang, Alla Petukhina
Autore Huang, Changquan
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica x, 372 p. : ill. ; 24 cm
Altri autori (Persone) Petukhina, Alla
Soggetto non controllato Artificial Intelligence
Big data analysis
Data Visualization
Data science
Financial Time Series
Forecasting
Machine Learning for Time Series
Markov switching models
Multivariate time series
Nonstationary Time Series
Python
State-space models
Stationary Time Series
Time Series Analysis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0276890
Huang, Changquan  
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Applied Time Series Analysis and Forecasting with Python / Changquan Huang, Alla Petukhina
Applied Time Series Analysis and Forecasting with Python / Changquan Huang, Alla Petukhina
Autore Huang, Changquan
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica x, 372 p. : ill. ; 24 cm
Altri autori (Persone) Petukhina, Alla
Soggetto topico 62-XX - Statistics [MSC 2020]
62M10 - Time series, auto-correlation, regression, etc. in statistics (GARCH) [MSC 2020]
Soggetto non controllato Artificial Intelligence
Big data analysis
Data Visualization
Data science
Financial Time Series
Forecasting
Machine Learning for Time Series
Markov switching models
Multivariate time series
Nonstationary Time Series
Python
State-space models
Stationary Time Series
Time Series Analysis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00276890
Huang, Changquan  
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Assessing Complexity in Physiological Systems through Biomedical Signals Analysis
Assessing Complexity in Physiological Systems through Biomedical Signals Analysis
Autore Castiglioni Paolo
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (296 p.)
Soggetto topico Mathematics & science
Research & information: general
Soggetto non controllato aging in human population
Alzheimer's disease
approximate entropy
autonomic nervous function
autonomic nervous system
baroreflex
baroreflex sensitivity (BRS)
biomarker
blood pressure
brain
brain dynamics
brain functional networks
brain signals
cardiovascular system
central autonomic network
cognitive task
complexity
complexity analysis
conditional transfer entropy
correlation dimension
cross-entropy
data compression
detrended fluctuation analysis
digital volume pulse (DVP)
dynamic functional connectivity
ECG
ectopic beat
entropy
event-related de/synchronization
factor analysis
fetal heart rate
fNIRS
fractal dimension
fragmentation
fuzzy entropy
heart rate
heart rate variability
heart rate variability (HRV)
hypobaric hypoxia
information dynamics
information flow
interconnectivity
K-means clustering algorithm
labor
largest Lyapunov exponent
linear prediction
mental arithmetics
motor imagery
multifractality
multiscale
multiscale complexity
multivariate time series analysis
network physiology
nonlinear analysis
partial information decomposition
penalized regression techniques
percussion entropy index (PEI)
photo-plethysmo-graphy (PPG)
posture
preterm
recurrence quantification analysis
refined composite multiscale entropy
rehabilitation medicine
relative consistency
Sampen
sample entropy
self-organized criticality
self-similarity
sEMG
single-channel analysis
State-space models
static functional connectivity
support vector machines classification
time series analysis
vasovagal syncope
vector autoregressive model
vector quantization
Zipf's law
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557601803321
Castiglioni Paolo  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayesian Inference of State Space Models : Kalman Filtering and Beyond / Kostas Triantafyllopoulos
Bayesian Inference of State Space Models : Kalman Filtering and Beyond / Kostas Triantafyllopoulos
Autore Triantafyllopoulos, Kostas
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xv, 495 p. : ill. ; 24 cm
Soggetto topico 93E11 - Filtering in stochastic control theory [MSC 2020]
62-XX - Statistics [MSC 2020]
62F15 - Bayesian inference [MSC 2020]
62M10 - Time series, auto-correlation, regression, etc. in statistics (GARCH) [MSC 2020]
62P20 - Applications of statistics to economics [MSC 2020]
62P05 - Applications of statistics to actuarial sciences and financial mathematics [MSC 2020]
91B84 - Economic time series analysis [MSC 2020]
62P30 - Applications of statistics in engineering and industry; control charts [MSC 2020]
93E03 - Stochastic systems in control theory (general) [MSC 2020]
62M20 - Inference from stochastic processes and prediction; filtering [MSC 2020]
Soggetto non controllato Bayesian estimation
Bayesian forecasting
Control theory
Dynamic models
Financial Time Series
Non Gaussian time series
Sequential Monte Carlo
State space in dynamic systems
State-space models
Stochastic volatility
Systems stability
Volatility models
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0274587
Triantafyllopoulos, Kostas  
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Bayesian Inference of State Space Models : Kalman Filtering and Beyond / Kostas Triantafyllopoulos
Bayesian Inference of State Space Models : Kalman Filtering and Beyond / Kostas Triantafyllopoulos
Autore Triantafyllopoulos, Kostas
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xv, 495 p. : ill. ; 24 cm
Soggetto topico 62-XX - Statistics [MSC 2020]
62F15 - Bayesian inference [MSC 2020]
62M10 - Time series, auto-correlation, regression, etc. in statistics (GARCH) [MSC 2020]
62M20 - Inference from stochastic processes and prediction; filtering [MSC 2020]
62P05 - Applications of statistics to actuarial sciences and financial mathematics [MSC 2020]
62P20 - Applications of statistics to economics [MSC 2020]
62P30 - Applications of statistics in engineering and industry; control charts [MSC 2020]
91B84 - Economic time series analysis [MSC 2020]
93E03 - Stochastic systems in control theory (general) [MSC 2020]
93E11 - Filtering in stochastic control theory [MSC 2020]
Soggetto non controllato Bayesian estimation
Bayesian forecasting
Control theory
Dynamic models
Financial Time Series
Non Gaussian time series
Sequential Monte Carlo
State space in dynamic systems
State-space models
Stochastic volatility
Systems stability
Volatility models
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00274587
Triantafyllopoulos, Kostas  
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Capture-Recapture: Parameter Estimation for Open Animal Populations / George A. F. Seber, Matthew R. Schofield
Capture-Recapture: Parameter Estimation for Open Animal Populations / George A. F. Seber, Matthew R. Schofield
Autore Seber, George Arthur F.
Pubbl/distr/stampa Cham, : Springer, 2019
Descrizione fisica xix, 663 p. : ill. ; 24 cm
Altri autori (Persone) Schofield, Matthew R.
Soggetto topico 62F10 - Point estimation [MSC 2020]
62Dxx - Statistical sampling theory and related topics [MSC 2020]
62P12 - Applications of statistics to environmental and related topics [MSC 2020]
Soggetto non controllato Acoustic tags
Animal migration
Bayesian models
Capture-mark-recapture
Cormack-Jolly –Seber models
GPS
Genetic markers
Monte Carlo Recapture Methods
Ring recovery data
State-space models
Survival estimation
Time series models
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0126757
Seber, George Arthur F.  
Cham, : Springer, 2019
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Capture-Recapture: Parameter Estimation for Open Animal Populations / George A. F. Seber, Matthew R. Schofield
Capture-Recapture: Parameter Estimation for Open Animal Populations / George A. F. Seber, Matthew R. Schofield
Autore Seber, George A. F.
Pubbl/distr/stampa Cham, : Springer, 2019
Descrizione fisica xix, 663 p. : ill. ; 24 cm
Altri autori (Persone) Schofield, Matthew R.
Soggetto topico 62Dxx - Statistical sampling theory and related topics [MSC 2020]
62F10 - Point estimation [MSC 2020]
62P12 - Applications of statistics to environmental and related topics [MSC 2020]
Soggetto non controllato Acoustic tags
Animal migration
Bayesian models
Capture-mark-recapture
Cormack-Jolly –Seber models
GPS
Genetic markers
Monte Carlo Recapture Methods
Ring recovery data
State-space models
Survival estimation
Time series models
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00126757
Seber, George A. F.  
Cham, : Springer, 2019
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Estimating Presence and Abundance of Closed Populations / George A. F. Seber, Matthew R. Schofield
Estimating Presence and Abundance of Closed Populations / George A. F. Seber, Matthew R. Schofield
Autore Seber, George A. F.
Pubbl/distr/stampa Cham, : Springer, 2023
Descrizione fisica xix, 723 p. : ill. ; 24 cm
Altri autori (Persone) Schofield, Matthew R.
Soggetto topico 62-XX - Statistics [MSC 2020]
62P12 - Applications of statistics to environmental and related topics [MSC 2020]
92D40 - Ecology [MSC 2020]
Soggetto non controllato Acoustic
Aerial surveys
Animal migration
Bayesian models
Capture-recapture
Capture-recapture methods
Catch-effort
Detectability
Distance methods
Line-intercept models
Marine
Occupancy
Plot sampling
Point and line transects
Removal and CIR methods
Spatial methods
Species methods
State-space models
Survival estimation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00278800
Seber, George A. F.  
Cham, : Springer, 2023
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui