top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Fundamentals of Data Analytics : With a View to Machine Learning / Rudolf Mathar ... [et al.]
Fundamentals of Data Analytics : With a View to Machine Learning / Rudolf Mathar ... [et al.]
Pubbl/distr/stampa Cham, : Springer, 2020
Descrizione fisica xi, 127 p. : ill. ; 24 cm
Soggetto topico 62-XX - Statistics [MSC 2020]
68T05 - Learning and adaptive systems in artificial intelligence [MSC 2020]
62H25 - Factor analysis and principal components; correspondence analysis [MSC 2020]
62R07 - Statistical aspects of big data and data science [MSC 2020]
Soggetto non controllato Artificial Intelligence
Classification
Clustering
Data science
Diffusion maps
Dimensionality reduction
Isomap
Kernel methods
Machine learning
MapReduce
Markov decision processes
Matrix optimization and approximation
Multidimensional Scaling
Principal component analysis
Spectral clustering
Supervised machine learning
Support Vector Machines
Unsupervised machine learning
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0249280
Cham, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Fundamentals of Data Analytics : With a View to Machine Learning / Rudolf Mathar ... [et al.]
Fundamentals of Data Analytics : With a View to Machine Learning / Rudolf Mathar ... [et al.]
Pubbl/distr/stampa Cham, : Springer, 2020
Descrizione fisica xi, 127 p. : ill. ; 24 cm
Soggetto topico 62-XX - Statistics [MSC 2020]
62H25 - Factor analysis and principal components; correspondence analysis [MSC 2020]
62R07 - Statistical aspects of big data and data science [MSC 2020]
68T05 - Learning and adaptive systems in artificial intelligence [MSC 2020]
Soggetto non controllato Artificial Intelligence
Classification
Clustering
Data science
Diffusion maps
Dimensionality reduction
Isomap
Kernel methods
Machine learning
MapReduce
Markov decision processes
Matrix optimization and approximation
Multidimensional Scaling
Principal component analysis
Spectral clustering
Supervised machine learning
Support Vector Machines
Unsupervised machine learning
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00249280
Cham, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Generalized principal component analysis / René Vidal, Yi Ma, S. Shankar Sastry
Generalized principal component analysis / René Vidal, Yi Ma, S. Shankar Sastry
Autore Vidal, René
Pubbl/distr/stampa New York, : Springer, 2016
Descrizione fisica XXXII, 566 p. : ill. ; 24 cm
Altri autori (Persone) Ma, Yi
Sastry, S. Shankar
Soggetto topico 14-XX - Algebraic geometry [MSC 2020]
15-XX - Linear and multilinear algebra; matrix theory [MSC 2020]
62B10 - Statistical aspects of information-theoretic topics [MSC 2020]
62H12 - Estimation in multivariate analysis [MSC 2020]
62-XX - Statistics [MSC 2020]
62J05 - Linear regression; mixed models [MSC 2020]
30C10 - Polynomials and rational functions of one complex variable [MSC 2020]
62H35 - Image analysis in multivariate analysis [MSC 2020]
62H25 - Factor analysis and principal components; correspondence analysis [MSC 2020]
62Jxx - Linear inference, regression [MSC 2020]
62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020]
62Fxx - Parametric inference [MSC 2020]
30C40 - Kernel functions in one complex variable and applications [MSC 2020]
14N20 - Configurations and arrangements of linear subspaces [MSC 2020]
Soggetto non controllato Hybrid system identification
Image and video segmentation
Linear subspace models
Low-rank matrix theory
Manifold learning
Principal component analysis
Robust principal component analysis
Sparse representation theory
Spectral clustering
Subspace arrangements
Subspace clustering
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0114796
Vidal, René  
New York, : Springer, 2016
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Generalized principal component analysis / René Vidal, Yi Ma, S. Shankar Sastry
Generalized principal component analysis / René Vidal, Yi Ma, S. Shankar Sastry
Autore Vidal, René
Pubbl/distr/stampa New York, : Springer, 2016
Descrizione fisica XXXII, 566 p. : ill. ; 24 cm
Altri autori (Persone) Ma, Yi
Sastry, S. Shankar
Soggetto topico 14-XX - Algebraic geometry [MSC 2020]
14N20 - Configurations and arrangements of linear subspaces [MSC 2020]
15-XX - Linear and multilinear algebra; matrix theory [MSC 2020]
30C10 - Polynomials and rational functions of one complex variable [MSC 2020]
30C40 - Kernel functions in one complex variable and applications [MSC 2020]
62-XX - Statistics [MSC 2020]
62B10 - Statistical aspects of information-theoretic topics [MSC 2020]
62Fxx - Parametric inference [MSC 2020]
62H12 - Estimation in multivariate analysis [MSC 2020]
62H25 - Factor analysis and principal components; correspondence analysis [MSC 2020]
62H35 - Image analysis in multivariate analysis [MSC 2020]
62J05 - Linear regression; mixed models [MSC 2020]
62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020]
62Jxx - Linear inference, regression [MSC 2020]
Soggetto non controllato Hybrid system identification
Image and video segmentation
Linear subspace models
Low-rank matrix theory
Manifold learning
Principal component analysis
Robust principal component analysis
Sparse representation theory
Spectral clustering
Subspace arrangements
Subspace clustering
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00114796
Vidal, René  
New York, : Springer, 2016
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui