Compressed Sensing in Information Processing / Gitta Kutyniok, Holger Rauhut, Robert J. Kunsch editors |
Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2022 |
Descrizione fisica | xvii, 542 p. : ill. ; 24 cm |
Soggetto non controllato |
Compressed Sensing
Information Processing Random matrix theory Signal processing Sparsity |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0276176 |
Cham, : Birkhäuser, : Springer, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Compressed Sensing in Information Processing / Gitta Kutyniok, Holger Rauhut, Robert J. Kunsch editors |
Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2022 |
Descrizione fisica | xvii, 542 p. : ill. ; 24 cm |
Soggetto topico |
15B52 - Random matrices (algebraic aspects) [MSC 2020]
65F22 - Ill-posedness and regularization problems in numerical linear algebra [MSC 2020] 68U10 - Computing methodologies for image processing [MSC 2020] 86A10 - Meteorology and atmospheric physics [MSC 2020] 90C25 - Convex programming [MSC 2020] 94Axx - Communication, information [MSC 2020] |
Soggetto non controllato |
Compressed Sensing
Information Processing Random matrix theory Signal processing Sparsity |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00276176 |
Cham, : Birkhäuser, : Springer, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Estimation and testing under sparsity : école d'été de probabilités de Saint-Flour XLV-2015 / Sara van de Geer |
Autore | Geer, Sara van de |
Pubbl/distr/stampa | [Cham], : Springer, 2016 |
Descrizione fisica | XIII, 274 p. ; 24 cm |
Soggetto topico |
60-XX - Probability theory and stochastic processes [MSC 2020]
62-XX - Statistics [MSC 2020] 68Q87 - Probability in computer science (algorithm analysis, random structures, phase transitions, etc.) [MSC 2020] |
Soggetto non controllato |
Empirical risk minimization
High-dimensional statistics Oracle inequality Sparsity |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0107470 |
Geer, Sara van de | ||
[Cham], : Springer, 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Estimation and testing under sparsity : école d'été de probabilités de Saint-Flour XLV-2015 / Sara van de Geer |
Autore | Geer, Sara van de |
Pubbl/distr/stampa | [Cham], : Springer, 2016 |
Descrizione fisica | XIII, 274 p. ; 24 cm |
Soggetto topico |
60-XX - Probability theory and stochastic processes [MSC 2020]
62-XX - Statistics [MSC 2020] 68Q87 - Probability in computer science (algorithm analysis, random structures, phase transitions, etc.) [MSC 2020] |
Soggetto non controllato |
Empirical risk minimization
High-dimensional statistics Oracle inequality Sparsity |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00107470 |
Geer, Sara van de | ||
[Cham], : Springer, 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Fundamentals of High-Dimensional Statistics : With Exercises and R Labs / Johannes Lederer |
Autore | Lederer, Johannes |
Pubbl/distr/stampa | Cham, : Springer, 2022 |
Descrizione fisica | xiv, 355 p. : ill. ; 24 cm |
Soggetto topico |
62-XX - Statistics [MSC 2020]
62H22 - Probabilistic graphical models [MSC 2020] 62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020] 62R07 - Statistical aspects of big data and data science [MSC 2020] |
Soggetto non controllato |
Calibration
Estimation Graphical Models High dimensional inference High-Dimensional Data High-dimensional statistics Lasso Linear regression Prediction R labs Regularization Sparsity Statistical inference |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0277448 |
Lederer, Johannes | ||
Cham, : Springer, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Fundamentals of High-Dimensional Statistics : With Exercises and R Labs / Johannes Lederer |
Autore | Lederer, Johannes |
Pubbl/distr/stampa | Cham, : Springer, 2022 |
Descrizione fisica | xiv, 355 p. : ill. ; 24 cm |
Soggetto topico |
62-XX - Statistics [MSC 2020]
62H22 - Probabilistic graphical models [MSC 2020] 62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020] 62R07 - Statistical aspects of big data and data science [MSC 2020] |
Soggetto non controllato |
Calibration
Estimation Graphical Models High dimensional inference High-Dimensional Data High-dimensional statistics Lasso Linear regression Prediction R labs Regularization Sparsity Statistical inference |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00277448 |
Lederer, Johannes | ||
Cham, : Springer, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Nonnegative matrix factorization / Nicolas Gillis |
Autore | Gillis, Nicolas |
Pubbl/distr/stampa | Philadelphia, : SIAM, 2021 |
Descrizione fisica | xix, 350 p. : ill. ; 26 cm |
Soggetto topico |
68-XX - Computer science [MSC 2020]
15B48 - Positive matrices and their generalizations; cones of matrices [MSC 2020] 15-XX - Linear and multilinear algebra; matrix theory [MSC 2020] 68T10 - Pattern recognition, speech recognition [MSC 2020] 15A23 - Factorization of matrices [MSC 2020] 68T09 - Computational aspects of data analysis and big data [MSC 2020] 65F55 - Numerical methods for low-rank matrix approximation; matrix compression [MSC 2020] |
Soggetto non controllato |
Computational complexity
Dictionary learning Gene expression analysis Hyperspectral Imaging Matrix Factorization Non-linear optimization Nonnegative matrix factorization Principal component analysis Recommender systems Singular value decomposition Sparsity audio source separation beta-divergences blind source separation block coordinate descent methods communication complexity extended formulations feature extraction identifiability linear dimensionality reduction low-rank matrix approximations multiplicative updates nested polytope problem nonnegative rank self-modeling curve resolution separability topic modeling |
ISBN | 978-16-11-97640-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0265397 |
Gillis, Nicolas | ||
Philadelphia, : SIAM, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Nonnegative matrix factorization / Nicolas Gillis |
Autore | Gillis, Nicolas |
Pubbl/distr/stampa | Philadelphia, : SIAM, 2021 |
Descrizione fisica | xix, 350 p. : ill. ; 26 cm |
Soggetto topico |
15-XX - Linear and multilinear algebra; matrix theory [MSC 2020]
15A23 - Factorization of matrices [MSC 2020] 15B48 - Positive matrices and their generalizations; cones of matrices [MSC 2020] 65F55 - Numerical methods for low-rank matrix approximation; matrix compression [MSC 2020] 68-XX - Computer science [MSC 2020] 68T09 - Computational aspects of data analysis and big data [MSC 2020] 68T10 - Pattern recognition, speech recognition [MSC 2020] |
Soggetto non controllato |
Computational complexity
Dictionary learning Gene expression analysis Hyperspectral Imaging Matrix Factorization Non-linear optimization Nonnegative matrix factorization Principal component analysis Recommender systems Singular value decomposition Sparsity audio source separation beta-divergences blind source separation block coordinate descent methods communication complexity extended formulations feature extraction identifiability linear dimensionality reduction low-rank matrix approximations multiplicative updates nested polytope problem nonnegative rank self-modeling curve resolution separability topic modeling |
ISBN | 978-16-11-97640-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00265397 |
Gillis, Nicolas | ||
Philadelphia, : SIAM, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Perspectives in shape analysis / Michael Breuß ... [et al.] editors |
Pubbl/distr/stampa | [Cham], : Springer, 2016 |
Descrizione fisica | XVII, 370 p. : ill. ; 24 cm |
Soggetto topico |
68-XX - Computer science [MSC 2020]
65D18 - Numerical aspects of computer graphics, image analysis, and computational geometry [MSC 2020] 65D19 - Computational issues in computer and robotic vision [MSC 2020] |
Soggetto non controllato |
Discrete and continuous shape models
Machine learning Mathematical morphology Shape Analysis Sparsity |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0115268 |
[Cham], : Springer, 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Perspectives in shape analysis / Michael Breuß ... [et al.] editors |
Pubbl/distr/stampa | [Cham], : Springer, 2016 |
Descrizione fisica | XVII, 370 p. : ill. ; 24 cm |
Soggetto topico |
65D18 - Numerical aspects of computer graphics, image analysis, and computational geometry [MSC 2020]
65D19 - Computational issues in computer and robotic vision [MSC 2020] 68-XX - Computer science [MSC 2020] |
Soggetto non controllato |
Discrete and continuous shape models
Machine learning Mathematical morphology Shape Analysis Sparsity |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00115268 |
[Cham], : Springer, 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|