Characters of Reductive Groups over a Finite Field. (AM-107), Volume 107 / / George Lusztig |
Autore | Lusztig George |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (408 pages) : illustrations |
Disciplina | 512/.2 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Finite groups
Finite fields (Algebra) Characters of groups |
Soggetto non controllato |
Addition
Algebra representation Algebraic closure Algebraic group Algebraic variety Algebraically closed field Bijection Borel subgroup Cartan subalgebra Character table Character theory Characteristic function (probability theory) Characteristic polynomial Class function (algebra) Classical group Coefficient Cohomology with compact support Cohomology Combination Complex number Computation Conjugacy class Connected component (graph theory) Coxeter group Cyclic group Cyclotomic polynomial David Kazhdan Dense set Derived category Diagram (category theory) Dimension Direct sum Disjoint sets Disjoint union E6 (mathematics) Eigenvalues and eigenvectors Endomorphism Equivalence class Equivalence relation Existential quantification Explicit formula Explicit formulae (L-function) Fiber bundle Finite field Finite group Fourier transform Green's function Group (mathematics) Group action Group representation Harish-Chandra Hecke algebra Identity element Integer Irreducible representation Isomorphism class Jordan decomposition Line bundle Linear combination Local system Mathematical induction Maximal torus Module (mathematics) Monodromy Morphism Orthonormal basis P-adic number Parametrization Parity (mathematics) Partially ordered set Perverse sheaf Pointwise Polynomial Quantity Rational point Reductive group Ree group Schubert variety Scientific notation Semisimple Lie algebra Sheaf (mathematics) Simple group Simple module Special case Standard basis Subset Subtraction Summation Surjective function Symmetric group Tensor product Theorem Two-dimensional space Unipotent representation Vector bundle Vector space Verma module Weil conjecture Weyl group Zariski topology |
ISBN | 1-4008-8177-3 |
Classificazione | SK 260 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- 1. COMPUTATION OF LOCAL INTERSECTION COHOMOLOGY OF CERTAIN LINE BUNDLES OVER A SCHUBERT VARIETY -- 2. LOCAL INTERSECTION COHOMOLOGY WITH TWISTED COEFFICIENTS OF THE CLOSURES OF THE VARIETIES XW -- 3. GLOBAL INTERSECTION COHOMOLOGY WITH TWISTED COEFFICIENTS OF THE VARIETY X̅W -- 4. REPRESENTATIONS OF WEYL GROUPS -- 5. CELLS IN WEYL GROUPS -- 6. AN INTEGRALITY THEOREM AND A DISJOINTNESS THEOREM -- 7. SOME EXCEPTIONAL GROUPS -- 8. DECOMPOSITION OF INDUCED REPRESENTATIONS -- 9. CLASSICAL GROUPS -- 10. COMPLETION OF THE PROOF OF THEOREM 4.23 -- 11. EIGENVALUES OF FROBENIUS -- 12. ON THE STRUCTURE OF LEFT CELLS -- 13. RELATIONS WITH CONJUGACY CLASSES -- 14. CONCLUDING REMARKS -- APPENDIX -- REFERENCES -- SUBJECT INDEX -- NOTATION INDEX -- Backmatter |
Record Nr. | UNINA-9910154752803321 |
Lusztig George
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Commensurabilities among Lattices in PU (1,n). (AM-132), Volume 132 / / G. Daniel Mostow, Pierre Deligne |
Autore | Deligne Pierre |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (196 pages) : illustrations |
Disciplina | 515/.25 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Hypergeometric functions
Monodromy groups Lattice theory |
Soggetto non controllato |
Abuse of notation
Algebraic variety Analytic continuation Arithmetic group Automorphism Bernhard Riemann Big O notation Codimension Coefficient Cohomology Commensurability (mathematics) Compactification (mathematics) Complete quadrangle Complex number Complex space Conjugacy class Connected component (graph theory) Coprime integers Cube root Derivative Diagonal matrix Differential equation Dimension (vector space) Discrete group Divisor (algebraic geometry) Divisor Eigenvalues and eigenvectors Ellipse Elliptic curve Equation Existential quantification Fiber bundle Finite group First principle Fundamental group Gelfand Holomorphic function Hypergeometric function Hyperplane Hypersurface Integer Inverse function Irreducible component Irreducible representation Isolated point Isomorphism class Line bundle Linear combination Linear differential equation Local coordinates Local system Locally finite collection Mathematical proof Minkowski space Moduli space Monodromy Morphism Multiplicative group Neighbourhood (mathematics) Open set Orbifold Permutation Picard group Point at infinity Polynomial ring Projective line Projective plane Projective space Root of unity Second derivative Simple group Smoothness Subgroup Subset Symmetry group Tangent space Tangent Theorem Transversal (geometry) Uniqueness theorem Variable (mathematics) Vector space |
ISBN | 1-4008-8251-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- CONTENTS -- ACKNOWLEDGMENTS -- §1. INTRODUCTION -- §2. PICARD GROUP AND COHOMOLOGY -- §3. COMPUTATIONS FOR Q AND Q+ -- §4. LAURICELLA'S HYPERGEOMETRIC FUNCTIONS -- §5. GELFAND'S DESCRIPTION OF HYPERGEOMETRIC FUNCTIONS -- §6. STRICT EXPONENTS -- §7. CHARACTERIZATION OF HYPERGEOMETRIC-LIKE LOCAL SYSTEMS -- §8. PRELIMINARIES ON MONODROMY GROUPS -- §9. BACKGROUND HEURISTICS -- §10. SOME COMMENSURABILITY THEOREMS -- §11. ANOTHER ISOGENY -- §12. COMMENSURABILITY AND DISCRETENESS -- §13. AN EXAMPLE -- §14. ORBIFOLD -- §15. ELLIPTIC AND EUCLIDEAN μ'S, REVISITED -- §16. LIVNE'S CONSTRUCTION OF LATTICES IN PU(1,2) -- §17. LIN E ARRANGEMENTS: QUESTIONS -- Bibliography |
Record Nr. | UNINA-9910154745503321 |
Deligne Pierre
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151), Volume 151 / / Richard Taylor, Michael Harris |
Autore | Harris Michael |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2001] |
Descrizione fisica | 1 online resource (288 p.) |
Disciplina | 516.3/5 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Mathematics
Shimura varieties MATHEMATICS / Number Theory |
Soggetto non controllato |
Abelian variety
Absolute value Algebraic group Algebraically closed field Artinian Automorphic form Base change Bijection Canonical map Codimension Coefficient Cohomology Compactification (mathematics) Conjecture Corollary Dimension (vector space) Dimension Direct limit Division algebra Eigenvalues and eigenvectors Elliptic curve Embedding Equivalence class Equivalence of categories Existence theorem Field of fractions Finite field Function field Functor Galois cohomology Galois group Generic point Geometry Hasse invariant Infinitesimal character Integer Inverse system Isomorphism class Lie algebra Local class field theory Maximal torus Modular curve Moduli space Monic polynomial P-adic number Prime number Profinite group Residue field Ring of integers Separable extension Sheaf (mathematics) Shimura variety Simple group Special case Spectral sequence Square root Subset Tate module Theorem Transcendence degree Unitary group Valuative criterion Variable (mathematics) Vector space Weil group Weil pairing Zariski topology |
ISBN | 1-4008-3720-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- Acknowledgements -- Chapter I. Preliminaries -- Chapter II. Barsotti-Tate groups -- Chapter III. Some simple Shimura varieties -- Chapter IV. Igusa varieties -- Chapter V. Counting Points -- Chapter VI. Automorphic forms -- Chapter VII. Applications -- Appendix. A result on vanishing cycles / Berkovich, V. G. -- Bibliography -- Index |
Record Nr. | UNINA-9910791960703321 |
Harris Michael
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2001] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|