top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Detection of random signals in dependent gaussian noise / Antonio F. Gualtierotti
Detection of random signals in dependent gaussian noise / Antonio F. Gualtierotti
Autore Gualtierotti, Antonio F.
Pubbl/distr/stampa [Cham], : Springer, 2015
Descrizione fisica XXXIV, 1176 p. : ill. ; 24 cm
Soggetto topico 60G15 - Gaussian processes [MSC 2020]
60H05 - Stochastic integrals [MSC 2020]
60-XX - Probability theory and stochastic processes [MSC 2020]
60H10 - Stochastic ordinary differential equations [MSC 2020]
46E22 - Hilbert spaces with reproducing kernels (= [proper] functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces) [MSC 2020]
60G35 - Signal detection and filtering (aspects of stochastic processes) [MSC 2020]
60G30 - Continuity and singularity of induced measures [MSC 2020]
60B11 - Probability theory on linear topological spaces [MSC 2020]
60G25 - Prediction theory (aspects of stochastic processes) [MSC 2020]
62M07 - Non-Markovian processes: hypothesis testing [MSC 2020]
94A13 - Detection theory in information and communication theory [MSC 2020]
Soggetto non controllato Cramér-Hida representations
Dependent signals with arbitrary laws
Girsanov‘s theory
Goursat processes
Information and communication, circuits
Prediction processes
Reproducing Kernel Hilbert spaces
Signal detection
Uniqueness class of continuous local martingales
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0113725
Gualtierotti, Antonio F.  
[Cham], : Springer, 2015
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Detection of random signals in dependent gaussian noise / Antonio F. Gualtierotti
Detection of random signals in dependent gaussian noise / Antonio F. Gualtierotti
Autore Gualtierotti, Antonio F.
Pubbl/distr/stampa [Cham], : Springer, 2015
Descrizione fisica XXXIV, 1176 p. : ill. ; 24 cm
Soggetto topico 46E22 - Hilbert spaces with reproducing kernels (= [proper] functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces) [MSC 2020]
60-XX - Probability theory and stochastic processes [MSC 2020]
60B11 - Probability theory on linear topological spaces [MSC 2020]
60G15 - Gaussian processes [MSC 2020]
60G25 - Prediction theory (aspects of stochastic processes) [MSC 2020]
60G30 - Continuity and singularity of induced measures [MSC 2020]
60G35 - Signal detection and filtering (aspects of stochastic processes) [MSC 2020]
60H05 - Stochastic integrals [MSC 2020]
60H10 - Stochastic ordinary differential equations [MSC 2020]
62M07 - Non-Markovian processes: hypothesis testing [MSC 2020]
94A13 - Detection theory in information and communication theory [MSC 2020]
Soggetto non controllato Cramér-Hida representations
Dependent signals with arbitrary laws
Girsanov‘s theory
Goursat processes
Information and communication, circuits
Prediction processes
Reproducing Kernel Hilbert spaces
Signal detection
Uniqueness class of continuous local martingales
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00113725
Gualtierotti, Antonio F.  
[Cham], : Springer, 2015
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Magnetic Resonance Brain Imaging : Modeling and Data Analysis Using R / Jörg Polzehl, Karsten Tabelow
Magnetic Resonance Brain Imaging : Modeling and Data Analysis Using R / Jörg Polzehl, Karsten Tabelow
Autore Polzehl, Jörg
Edizione [2. ed]
Pubbl/distr/stampa Cham, : Springer, 2023
Descrizione fisica xvi, 258 p. : ill. ; 24 cm
Altri autori (Persone) Tabelow, Karsten
Soggetto topico 62-XX - Statistics [MSC 2020]
62H35 - Image analysis in multivariate analysis [MSC 2020]
62P10 - Applications of statistics to biology and medical sciences; meta analysis [MSC 2020]
62R10 - Functional data analysis [MSC 2020]
92-XX - Biology and other natural sciences [MSC 2020]
92C55 - Biomedical imaging and signal processing [MSC 2020]
Soggetto non controllato BIDS standard
Diffusion models
Functional Magnetic Resonance Imaging
Functional connectivity
Magnetic Reconance Imaging data formats
Multi-Parameter Mapping
Multiple comparisons
NeuroConductor
Preprocessing pipelines
Quantitative Magnetic Resonance Imaging
Resting state Magnetic Resonance Imaging
Signal detection
Structural Magnetic Resonance Imaging
Structural adaptive smoothing
Structural connectivity
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00278868
Polzehl, Jörg  
Cham, : Springer, 2023
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Magnetic Resonance Brain Imaging : Modeling and Data Analysis Using R / Jörg Polzehl, Karsten Tabelow
Magnetic Resonance Brain Imaging : Modeling and Data Analysis Using R / Jörg Polzehl, Karsten Tabelow
Autore Polzehl, Jörg
Pubbl/distr/stampa Cham, : Springer, 2019
Descrizione fisica xviii, 231 p. : ill. ; 24 cm
Altri autori (Persone) Tabelow, Karsten
Soggetto topico 92-XX - Biology and other natural sciences [MSC 2020]
92C55 - Biomedical imaging and signal processing [MSC 2020]
62-XX - Statistics [MSC 2020]
62P10 - Applications of statistics to biology and medical sciences; meta analysis [MSC 2020]
62H35 - Image analysis in multivariate analysis [MSC 2020]
94A08 - Image processing (compression, reconstruction, etc.) in information and communication theory [MSC 2020]
Soggetto non controllato BIDS standard
Diffusion models
Functional Magnetic Resonance Imaging
Functional connectivity
Magnetic Reconance Imaging data formats
Multi-Parameter Mapping
Multiple comparisons
NeuroConductor
Preprocessing pipelines
Quantitative Magnetic Resonance Imaging
Resting state Magnetic Resonance Imaging
Signal detection
Structural Magnetic Resonance Imaging
Structural adaptive smoothing
Structural connectivity
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0126977
Polzehl, Jörg  
Cham, : Springer, 2019
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Magnetic Resonance Brain Imaging : Modeling and Data Analysis Using R / Jörg Polzehl, Karsten Tabelow
Magnetic Resonance Brain Imaging : Modeling and Data Analysis Using R / Jörg Polzehl, Karsten Tabelow
Autore Polzehl, Jörg
Pubbl/distr/stampa Cham, : Springer, 2019
Descrizione fisica xviii, 231 p. : ill. ; 24 cm
Altri autori (Persone) Tabelow, Karsten
Soggetto topico 62-XX - Statistics [MSC 2020]
62H35 - Image analysis in multivariate analysis [MSC 2020]
62P10 - Applications of statistics to biology and medical sciences; meta analysis [MSC 2020]
92-XX - Biology and other natural sciences [MSC 2020]
92C55 - Biomedical imaging and signal processing [MSC 2020]
94A08 - Image processing (compression, reconstruction, etc.) in information and communication theory [MSC 2020]
Soggetto non controllato BIDS standard
Diffusion models
Functional Magnetic Resonance Imaging
Functional connectivity
Magnetic Reconance Imaging data formats
Multi-Parameter Mapping
Multiple comparisons
NeuroConductor
Preprocessing pipelines
Quantitative Magnetic Resonance Imaging
Resting state Magnetic Resonance Imaging
Signal detection
Structural Magnetic Resonance Imaging
Structural adaptive smoothing
Structural connectivity
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00126977
Polzehl, Jörg  
Cham, : Springer, 2019
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui