Stable and Random Motions in Dynamical Systems : With Special Emphasis on Celestial Mechanics (AM-77) / / Jurgen Moser |
Autore | Moser Jurgen |
Edizione | [With a New foreword by Philip J. Holmes] |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (212 pages) : illustrations |
Disciplina | 521/.1 |
Collana | Princeton Landmarks in Mathematics and Physics |
Soggetto topico | Celestial mechanics |
Soggetto non controllato |
Accuracy and precision
Action-angle coordinates Analytic function Bounded variation Calculation Chaos theory Coefficient Commutator Constant term Continuous embedding Continuous function Coordinate system Countable set Degrees of freedom (statistics) Degrees of freedom Derivative Determinant Differentiable function Differential equation Dimension (vector space) Discrete group Divergent series Divisor Duffing equation Eigenfunction Eigenvalues and eigenvectors Elliptic orbit Energy level Equation Ergodic theory Ergodicity Euclidean space Even and odd functions Existence theorem Existential quantification First-order partial differential equation Forcing function (differential equations) Fréchet derivative Gravitational constant Hamiltonian mechanics Hamiltonian system Hessian matrix Heteroclinic orbit Homoclinic orbit Hyperbolic partial differential equation Hyperbolic set Initial value problem Integer Integrable system Integration by parts Invariant manifold Inverse function Invertible matrix Iteration Jordan curve theorem Klein bottle Lie algebra Linear map Linear subspace Linearization Maxima and minima Monotonic function Newton's method Nonlinear system Normal bundle Normal mode Open set Parameter Partial differential equation Periodic function Periodic point Perturbation theory (quantum mechanics) Phase space Poincaré conjecture Polynomial Probability theory Proportionality (mathematics) Quasiperiodic motion Rate of convergence Rational dependence Regular element Root of unity Series expansion Sign (mathematics) Smoothness Special case Stability theory Statistical mechanics Structural stability Symbolic dynamics Symmetric matrix Tangent space Theorem Three-body problem Uniqueness theorem Unitary matrix Variable (mathematics) Variational principle Vector field Zero of a function |
ISBN | 1-4008-8269-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- TABLE OF CONTENTS -- I. INTRODUCTION -- II. STABILITY PROBLEMS -- III. STATISTICAL BEHAVIOR -- V. FINAL REMARKS -- V. EXISTENCE PROOF IN THE PRESENCE OF SMALL DIVISORS -- VI. PROOFS AND DETAILS FOR CHAPTER III -- BOOKS AND SURVEY ARTICLES |
Record Nr. | UNINA-9910164944903321 |
Moser Jurgen
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Wave scattering by time dependent perturbations [[electronic resource] ] : an introduction / / G.F. Roach |
Autore | Roach G. F (Gary Francis) |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, N.J., : Princeton University Press, 2007 |
Descrizione fisica | 1 online resource (300 p.) |
Disciplina | 531/.1133 |
Collana | Princeton series in applied mathematics |
Soggetto topico |
Waves - Mathematics
Scattering (Physics) - Mathematics Perturbation (Mathematics) |
Soggetto non controllato |
Acoustic wave equation
Acoustic wave Affine space Angular frequency Approximation Asymptotic analysis Asymptotic expansion Banach space Basis (linear algebra) Bessel's inequality Boundary value problem Bounded operator C0-semigroup Calculation Characteristic function (probability theory) Classical physics Codimension Coefficient Continuous function (set theory) Continuous function Continuous spectrum Convolution Differentiable function Differential equation Dimension (vector space) Dimension Dimensional analysis Dirac delta function Dirichlet problem Distribution (mathematics) Duhamel's principle Eigenfunction Eigenvalues and eigenvectors Electromagnetism Equation Existential quantification Exponential function Floquet theory Fourier inversion theorem Fourier series Fourier transform Fredholm integral equation Frequency domain Helmholtz equation Hilbert space Initial value problem Integral equation Integral transform Integration by parts Inverse problem Inverse scattering problem Lebesgue measure Linear differential equation Linear map Linear space (geometry) Locally integrable function Longitudinal wave Mathematical analysis Mathematical physics Metric space Operator theory Ordinary differential equation Orthonormal basis Orthonormality Parseval's theorem Partial derivative Partial differential equation Phase velocity Plane wave Projection (linear algebra) Propagator Quantity Quantum mechanics Reflection coefficient Requirement Riesz representation theorem Scalar (physics) Scattering theory Scattering Scientific notation Self-adjoint operator Self-adjoint Series expansion Sine wave Spectral method Spectral theorem Spectral theory Square-integrable function Subset Theorem Theory Time domain Time evolution Unbounded operator Unitarity (physics) Vector space Volterra integral equation Wave function Wave packet Wave propagation |
ISBN |
1-282-15878-3
9786612158780 1-4008-2816-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Chapter One. Introduction and Outline of Contents -- Chapter Two. Some Aspects of Waves on Strings -- Chapter Three. Mathematical Preliminaries -- Chapter Four. Spectral Theory and Spectral Decompositions -- Chapter Five. On Nonautonomous Problems -- Chapter Six. On Scattering Theory Strategies -- Chapter Seven. Echo Analysis -- Chapter Eight. Wave Scattering from Time-Periodic Perturbations -- Chapter Nine Concerning Inverse Problems -- Chapter Ten. Some Remarks on Scattering in Other Wave Systems -- Chapter Eleven. Commentaries and Appendices -- Bibliography -- Index |
Record Nr. | UNINA-9910778218403321 |
Roach G. F (Gary Francis)
![]() |
||
Princeton, N.J., : Princeton University Press, 2007 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|