Characters of Reductive Groups over a Finite Field. (AM-107), Volume 107 / / George Lusztig |
Autore | Lusztig George |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (408 pages) : illustrations |
Disciplina | 512/.2 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Finite groups
Finite fields (Algebra) Characters of groups |
Soggetto non controllato |
Addition
Algebra representation Algebraic closure Algebraic group Algebraic variety Algebraically closed field Bijection Borel subgroup Cartan subalgebra Character table Character theory Characteristic function (probability theory) Characteristic polynomial Class function (algebra) Classical group Coefficient Cohomology with compact support Cohomology Combination Complex number Computation Conjugacy class Connected component (graph theory) Coxeter group Cyclic group Cyclotomic polynomial David Kazhdan Dense set Derived category Diagram (category theory) Dimension Direct sum Disjoint sets Disjoint union E6 (mathematics) Eigenvalues and eigenvectors Endomorphism Equivalence class Equivalence relation Existential quantification Explicit formula Explicit formulae (L-function) Fiber bundle Finite field Finite group Fourier transform Green's function Group (mathematics) Group action Group representation Harish-Chandra Hecke algebra Identity element Integer Irreducible representation Isomorphism class Jordan decomposition Line bundle Linear combination Local system Mathematical induction Maximal torus Module (mathematics) Monodromy Morphism Orthonormal basis P-adic number Parametrization Parity (mathematics) Partially ordered set Perverse sheaf Pointwise Polynomial Quantity Rational point Reductive group Ree group Schubert variety Scientific notation Semisimple Lie algebra Sheaf (mathematics) Simple group Simple module Special case Standard basis Subset Subtraction Summation Surjective function Symmetric group Tensor product Theorem Two-dimensional space Unipotent representation Vector bundle Vector space Verma module Weil conjecture Weyl group Zariski topology |
ISBN | 1-4008-8177-3 |
Classificazione | SK 260 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- 1. COMPUTATION OF LOCAL INTERSECTION COHOMOLOGY OF CERTAIN LINE BUNDLES OVER A SCHUBERT VARIETY -- 2. LOCAL INTERSECTION COHOMOLOGY WITH TWISTED COEFFICIENTS OF THE CLOSURES OF THE VARIETIES XW -- 3. GLOBAL INTERSECTION COHOMOLOGY WITH TWISTED COEFFICIENTS OF THE VARIETY X̅W -- 4. REPRESENTATIONS OF WEYL GROUPS -- 5. CELLS IN WEYL GROUPS -- 6. AN INTEGRALITY THEOREM AND A DISJOINTNESS THEOREM -- 7. SOME EXCEPTIONAL GROUPS -- 8. DECOMPOSITION OF INDUCED REPRESENTATIONS -- 9. CLASSICAL GROUPS -- 10. COMPLETION OF THE PROOF OF THEOREM 4.23 -- 11. EIGENVALUES OF FROBENIUS -- 12. ON THE STRUCTURE OF LEFT CELLS -- 13. RELATIONS WITH CONJUGACY CLASSES -- 14. CONCLUDING REMARKS -- APPENDIX -- REFERENCES -- SUBJECT INDEX -- NOTATION INDEX -- Backmatter |
Record Nr. | UNINA-9910154752803321 |
Lusztig George
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Unitary Representations of Reductive Lie Groups. (AM-118), Volume 118 / / David A. Vogan |
Autore | Vogan David A. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (320 pages) |
Disciplina | 512/.55 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Lie groups
Representations of Lie groups |
Soggetto non controllato |
Abelian group
Adjoint representation Annihilator (ring theory) Atiyah–Singer index theorem Automorphic form Automorphism Cartan subgroup Circle group Class function (algebra) Classification theorem Cohomology Commutator subgroup Complete metric space Complex manifold Conjugacy class Cotangent space Dimension (vector space) Discrete series representation Dixmier conjecture Dolbeault cohomology Duality (mathematics) Eigenvalues and eigenvectors Exponential map (Lie theory) Exponential map (Riemannian geometry) Exterior algebra Function space Group homomorphism Harmonic analysis Hecke algebra Hilbert space Hodge theory Holomorphic function Holomorphic vector bundle Homogeneous space Homomorphism Induced representation Infinitesimal character Inner automorphism Invariant subspace Irreducibility (mathematics) Irreducible representation Isometry group Isometry K-finite Kazhdan–Lusztig polynomial Langlands decomposition Lie algebra cohomology Lie algebra representation Lie algebra Lie group action Lie group Mathematical induction Maximal compact subgroup Measure (mathematics) Minkowski space Nilpotent group Orbit method Orthogonal group Parabolic induction Principal homogeneous space Principal series representation Projective space Pseudo-Riemannian manifold Pullback (category theory) Ramanujan–Petersson conjecture Reductive group Regularity theorem Representation of a Lie group Representation theorem Representation theory Riemann sphere Riemannian manifold Schwartz space Semisimple Lie algebra Sheaf (mathematics) Sign (mathematics) Special case Spectral theory Sub"ient Subgroup Support (mathematics) Symplectic geometry Symplectic group Symplectic vector space Tangent space Tautological bundle Theorem Topological group Topological space Trivial representation Unitary group Unitary matrix Unitary representation Universal enveloping algebra Vector bundle Weyl algebra Weyl character formula Weyl group Zariski's main theorem Zonal spherical function |
ISBN | 1-4008-8238-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- CONTENTS -- ACKNOWLEDGEMENTS -- INTRODUCTION -- Chapter 1. COMPACT GROUPS AND THE BOREL-WEIL THEOREM -- Chapter 2. HARISH-CHANDRA MODULES -- Chapter 3. PARABOLIC INDUCTION -- Chapter 4. STEIN COMPLEMENTARY SERIES AND THE UNITARY DUAL OF GL(n,ℂ) -- Chapter 5. COHOMOLOGICAL PARABOLIC INDUCTION: ANALYTIC THEORY -- Chapter 6. COHOMOLOGICAL PARABOLIC INDUCTION: ALGEBRAIC THEORY -- Interlude. THE IDEA OF UNIPOTENT REPRESENTATIONS -- Chapter 7. FINITE GROUPS AND UNIPOTENT REPRESENTATIONS -- Chapter 8. LANGLANDS' PRINCIPLE OF FUNCTORIALITY AND UNIPOTENT REPRESENTATIONS -- Chapter 9. PRIMITIVE IDEALS AND UNIPOTENT REPRESENTATIONS -- Chapter 10. THE ORBIT METHOD AND UNIPOTENT REPRESENTATIONS -- Chapter 11. E-MULTIPLICITIES AND UNIPOTENT REPRESENTATIONS -- Chapter 12. ON THE DEFINITION OF UNIPOTENT REPRESENTATIONS -- Chapter 13. EXHAUSTION -- REFERENCES -- Backmatter |
Record Nr. | UNINA-9910154742103321 |
Vogan David A.
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|