Differential Geometry / Victor V. Prasolov |
Autore | Prasolov, Viktor V. |
Pubbl/distr/stampa | Cham, : Springer, 2022 |
Descrizione fisica | xi, 271 p. : ill. ; 24 cm |
Soggetto non controllato |
Differential geometry
First fundamental form Gaussian curvature Geometry of surfaces Second fundamental form Theorem of Gauss Bonnet |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0277140 |
Prasolov, Viktor V. | ||
Cham, : Springer, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Differential Geometry / Victor V. Prasolov |
Autore | Prasolov, Viktor V. |
Pubbl/distr/stampa | Cham, : Springer, 2022 |
Descrizione fisica | xi, 271 p. : ill. ; 24 cm |
Soggetto topico |
53-XX - Differential geometry [MSC 2020]
53A04 - Curves in Euclidean and related spaces [MSC 2020] 53A05 - Surfaces in Euclidean and related space [MSC 2020] 53A07 - Higher-dimensional and -codimensional surfaces in Euclidean and related $n$-space [MSC 2020] |
Soggetto non controllato |
Differential geometry
First fundamental form Gaussian curvature Geometry of surfaces Second fundamental form Theorem of Gauss Bonnet |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00277140 |
Prasolov, Viktor V. | ||
Cham, : Springer, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Radon transforms and the rigidity of the Grassmannians [[electronic resource] /] / Jacques Gasqui and Hubert Goldschmidt |
Autore | Gasqui Jacques |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, N.J., : Princeton University Press, 2004 |
Descrizione fisica | 1 online resource (385 p.) |
Disciplina | 515/.723 |
Altri autori (Persone) | GoldschmidtHubert <1942-> |
Collana | Annals of mathematics studies |
Soggetto topico |
Radon transforms
Grassmann manifolds |
Soggetto non controllato |
Adjoint
Automorphism Cartan decomposition Cartan subalgebra Casimir element Closed geodesic Cohomology Commutative property Complex manifold Complex number Complex projective plane Complex projective space Complex vector bundle Complexification Computation Constant curvature Coset Covering space Curvature Determinant Diagram (category theory) Diffeomorphism Differential form Differential geometry Differential operator Dimension (vector space) Dot product Eigenvalues and eigenvectors Einstein manifold Elliptic operator Endomorphism Equivalence class Even and odd functions Exactness Existential quantification G-module Geometry Grassmannian Harmonic analysis Hermitian symmetric space Hodge dual Homogeneous space Identity element Implicit function Injective function Integer Integral Isometry Killing form Killing vector field Lemma (mathematics) Lie algebra Lie derivative Line bundle Mathematical induction Morphism Open set Orthogonal complement Orthonormal basis Orthonormality Parity (mathematics) Partial differential equation Projection (linear algebra) Projective space Quadric Quaternionic projective space Quotient space (topology) Radon transform Real number Real projective plane Real projective space Real structure Remainder Restriction (mathematics) Riemann curvature tensor Riemann sphere Riemannian manifold Rigidity (mathematics) Scalar curvature Second fundamental form Simple Lie group Standard basis Stokes' theorem Subgroup Submanifold Symmetric space Tangent bundle Tangent space Tangent vector Tensor Theorem Topological group Torus Unit vector Unitary group Vector bundle Vector field Vector space X-ray transform Zero of a function |
ISBN |
1-282-15898-8
9786612158988 1-4008-2617-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- Chapter I. Symmetric Spaces and Einstein Manifolds -- Chapter II. Radon Transforms on Symmetric Spaces -- Chapter III. Symmetric Spaces of Rank One -- Chapter IV. The Real Grassmannians -- Chapter V. The Complex Quadric -- Chapter VI. The Rigidity of the Complex Quadric -- Chapter VII. The Rigidity of the Real Grassmannians -- Chapter VIII. The Complex Grassmannians -- Chapter IX. The Rigidity of the Complex Grassmannians -- Chapter X. Products of Symmetric Spaces -- References -- Index |
Record Nr. | UNINA-9910778216403321 |
Gasqui Jacques | ||
Princeton, N.J., : Princeton University Press, 2004 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Seminar on minimal submanifolds / / edited by Enrico Bombieri |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , 1983 |
Descrizione fisica | 1 online resource (368 pages) : illustrations |
Disciplina | 516.3/6 |
Collana | Annals of mathematics studies |
Soggetto topico | Minimal submanifolds |
Soggetto non controllato |
A priori estimate
Analytic function Banach space Boundary (topology) Boundary value problem Bounded set (topological vector space) Branch point Cauchy–Riemann equations Center manifold Closed geodesic Codimension Coefficient Cohomology Compactness theorem Comparison theorem Configuration space Conformal geometry Conformal group Conformal map Continuous function Cross product Curve Degeneracy (mathematics) Diffeomorphism Differential form Dirac operator Discrete group Divergence theorem Eigenvalues and eigenvectors Elementary proof Equation Existence theorem Existential quantification Exterior derivative First variation Free boundary problem Fundamental group Gauss map Geodesic Geometry Group action Hamiltonian mechanics Harmonic function Harmonic map Hausdorff dimension Hausdorff measure Homotopy group Homotopy Hurewicz theorem Hyperbolic 3-manifold Hyperbolic manifold Hyperbolic space Hypersurface Implicit function theorem Infimum and supremum Injective function Inner automorphism Isolated singularity Isometry group Isoperimetric problem Klein bottle Kleinian group Limit set Lipschitz continuity Mapping class group Maxima and minima Maximum principle Minimal surface of revolution Minimal surface Monotonic function Möbius transformation Norm (mathematics) Orthonormal basis Parametric surface Periodic function Poincaré conjecture Projection (linear algebra) Regularity theorem Riemann surface Riemannian manifold Schwarz reflection principle Second fundamental form Semi-continuity Simply connected space Special case Stein's lemma Subalgebra Subgroup Submanifold Subsequence Support (mathematics) Symplectic manifold Tangent space Teichmüller space Theorem Trace (linear algebra) Uniformization Uniqueness theorem Variational principle Yamabe problem |
ISBN | 1-4008-8143-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- CONTENTS -- INTRODUCTION -- SURVEY LECTURES ON MINIMAL SUBMANIFOLDS -- ON THE EXISTENCE OF SHORT CLOSED GEODESICS AND THEIR STABILITY PROPERTIES -- EXISTENCE OF PERIODIC MOTIONS OF CONSERVATIVE SYSTEMS -- ARE HARMONICALLY IMMERSED SURFACES AT ALL LIKE MINIMALLY IMMERSED SURFACES? -- ESTIMATES FOR STABLE MINIMAL SURFACE S IN THREE DIMENSIONAL MANIFOLDS -- REGULARITY OF SIMPLY CONNECTED SURFACES WITH QUASICONFORMAL GAUSS MAP -- CLOSED MINIMAL SURFACES IN H Y PER BOLIC 3-MANIFOLDS -- MINIMAL SPHERES AND OTHER CONFORMAL VARIATIONAL PROBLEMS -- MINIMAL HYPERSURFACES OF SPHERES WITH CONS TANT SCALAR CURVATURE -- REGULAR MINIMAL HY PERSURF ACES EXIST ON MANIFOLDS IN DIMENSIONS UP TO SIX -- AFFINE MINIMAL SURFACES -- THE MINIMAL VARIETIES ASSOCIATED TO A CLOSED FORM -- NECESSARY CONDITIONS FOR SUBMANIFOLDS AND CURRENTS WITH PRESCRIBED MEAN CURVATURE VECTOR -- APPROXIMATION OF RECTIFIABLE CURRENTS BY LIPSCHITZ Q VALUED FUNCTIONS -- SIMPLE CLOSED GEODESICS ON OVALOIDS AND THE CALCULUS OF VARIATIONS -- ON THE GEHRING LINK PROBLEM -- CONSTRUCTING CRYSTALLIN E MINIMAL SURFACES -- REGULARITY OF AREA-MINIMIZING HYPERSURFACES AT BOUNDARIES WITH MULTIPLICITY -- NEW METHODS IN THE STUDY OF FREE BOUNDARY PROBLEMS -- SOME PROPERTIES OF CAPILLARY FREE SURFACE -- BERNSTEIN CONJECTURE IN HYPERBOLIC GEOMETRY -- Backmatter |
Record Nr. | UNINA-9910154753403321 |
Princeton, NJ : , : Princeton University Press, , 1983 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|