top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Differential Geometry
Differential Geometry
Autore Mihai Ion
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 online resource (166 p.)
Soggetto non controllato affine hypersurface
affine sphere
anti-invariant
C-Bochner tensor
capacity
Casorati curvature
centrodes
circular helices
circular rectifying curves
compact complex surfaces
complete connection
concircular vector field
concurrent vector field
conical surface
conjugate connection
conjugate symmetric statistical structure
constant ratio submanifolds
cylindrical hypersurface
Darboux frame
developable surface
Euclidean submanifold
framed helices
framed rectifying curves
Frenet frame
generalized 1-type Gauss map
generalized normalized ?-Casorati curvature
Hessian manifolds
Hessian sectional curvature
Hodge-Laplacian
inextensible flow
invariant
k-th generalized Tanaka-Webster connection
Kähler-Einstein metrics
L2-harmonic forms
L2-Stokes theorem
lie derivative
lightlike surface
manifold with singularity
Minkowski plane
Minkowskian angle
Minkowskian length
Minkowskian pseudo-angle
non-flat complex space form
pinching of the curvatures
position vector field
real hypersurface
rectifying submanifold
Reeb flow symmetry
Ricci curvature
Ricci operator
Ricci soliton
ruled surface
Sasakian manifold
Sasakian statistical manifold
scalar curvature
sectional ?-curvature
shape operator
singular points
slant
statistical manifolds
statistical structure
symplectic curvatures
symplectic curves
T-submanifolds
trans-Sasakian 3-manifold
ISBN 3-03921-801-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367742103321
Mihai Ion  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Differential Geometry, Algebra, and Analysis : ICDGAA 2016, New Delhi, India, November 15–17 / Mohammad Hasan Shahid ... [et al.] editors
Differential Geometry, Algebra, and Analysis : ICDGAA 2016, New Delhi, India, November 15–17 / Mohammad Hasan Shahid ... [et al.] editors
Pubbl/distr/stampa Singapore, : Springer, 2020
Descrizione fisica xii, 284 p. : ill. ; 24 cm
Soggetto topico 16-XX - Associative rings and algebras [MSC 2020]
46-XX - Functional analysis [MSC 2020]
53-XX - Differential geometry [MSC 2020]
32Q15 - Kähler manifolds [MSC 2020]
30Lxx - Analysis on metric spaces [MSC 2020]
Soggetto non controllato Algebra
Analysis
Banach
Differential geometry
Lie ideal
Manifolds
Prime rings
Sasakian manifold
Sequence spaces
Warped product
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0250107
Singapore, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Differential Geometry, Algebra, and Analysis : ICDGAA 2016, New Delhi, India, November 15–17 / Mohammad Hasan Shahid ... [et al.] editors
Differential Geometry, Algebra, and Analysis : ICDGAA 2016, New Delhi, India, November 15–17 / Mohammad Hasan Shahid ... [et al.] editors
Pubbl/distr/stampa Singapore, : Springer, 2020
Descrizione fisica xii, 284 p. : ill. ; 24 cm
Soggetto topico 16-XX - Associative rings and algebras [MSC 2020]
30Lxx - Analysis on metric spaces [MSC 2020]
32Q15 - Kähler manifolds [MSC 2020]
46-XX - Functional analysis [MSC 2020]
53-XX - Differential geometry [MSC 2020]
Soggetto non controllato Algebra
Analysis
Banach
Differential geometry
Lie ideal
Manifolds
Prime rings
Sasakian manifold
Sequence spaces
Warped product
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00250107
Singapore, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui