top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Differential Geometry
Differential Geometry
Autore Mihai Ion
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (166 p.)
Soggetto non controllato statistical structure
constant ratio submanifolds
Euclidean submanifold
framed helices
Sasakian statistical manifold
L2-harmonic forms
Hodge–Laplacian
complete connection
concircular vector field
cylindrical hypersurface
k-th generalized Tanaka–Webster connection
Casorati curvature
symplectic curves
generalized 1-type Gauss map
rectifying submanifold
manifold with singularity
ruled surface
Minkowski plane
compact complex surfaces
conjugate connection
T-submanifolds
L2-Stokes theorem
inextensible flow
shape operator
generalized normalized ?-Casorati curvature
Sasakian manifold
centrodes
circular helices
non-flat complex space form
invariant
Frenet frame
Darboux frame
trans-Sasakian 3-manifold
singular points
symplectic curvatures
Kähler–Einstein metrics
conjugate symmetric statistical structure
sectional ?-curvature
circular rectifying curves
developable surface
capacity
Ricci soliton
Reeb flow symmetry
Minkowskian pseudo-angle
conical surface
lie derivative
position vector field
pinching of the curvatures
Hessian manifolds
Minkowskian angle
Hessian sectional curvature
Minkowskian length
lightlike surface
affine sphere
concurrent vector field
slant
affine hypersurface
anti-invariant
statistical manifolds
Ricci operator
C-Bochner tensor
Ricci curvature
real hypersurface
scalar curvature
framed rectifying curves
ISBN 3-03921-801-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367742103321
Mihai Ion  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Differential Geometry, Algebra, and Analysis : ICDGAA 2016, New Delhi, India, November 15–17 / Mohammad Hasan Shahid ... [et al.] editors
Differential Geometry, Algebra, and Analysis : ICDGAA 2016, New Delhi, India, November 15–17 / Mohammad Hasan Shahid ... [et al.] editors
Pubbl/distr/stampa Singapore, : Springer, 2020
Descrizione fisica xii, 284 p. : ill. ; 24 cm
Soggetto topico 16-XX - Associative rings and algebras [MSC 2020]
46-XX - Functional analysis [MSC 2020]
53-XX - Differential geometry [MSC 2020]
32Q15 - Kähler manifolds [MSC 2020]
30Lxx - Analysis on metric spaces [MSC 2020]
Soggetto non controllato Algebra
Analysis
Banach
Differential geometry
Lie ideal
Manifolds
Prime rings
Sasakian manifold
Sequence spaces
Warped product
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0250107
Singapore, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Differential Geometry, Algebra, and Analysis : ICDGAA 2016, New Delhi, India, November 15–17 / Mohammad Hasan Shahid ... [et al.] editors
Differential Geometry, Algebra, and Analysis : ICDGAA 2016, New Delhi, India, November 15–17 / Mohammad Hasan Shahid ... [et al.] editors
Pubbl/distr/stampa Singapore, : Springer, 2020
Descrizione fisica xii, 284 p. : ill. ; 24 cm
Soggetto topico 16-XX - Associative rings and algebras [MSC 2020]
30Lxx - Analysis on metric spaces [MSC 2020]
32Q15 - Kähler manifolds [MSC 2020]
46-XX - Functional analysis [MSC 2020]
53-XX - Differential geometry [MSC 2020]
Soggetto non controllato Algebra
Analysis
Banach
Differential geometry
Lie ideal
Manifolds
Prime rings
Sasakian manifold
Sequence spaces
Warped product
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00250107
Singapore, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui