top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Drought Risk Management in Reflect Changing of Meteorological Conditions
Drought Risk Management in Reflect Changing of Meteorological Conditions
Autore Walega Andrzej
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (264 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato agricultural drought
ANN
ARIMA
atmospheric blocking
atmospheric circulation
atmospheric drought
atmospheric evaporative demand
beech
biodiversity
blue green infrastructure
Carpathian Mts
central Poland
climate change
climatic water balance
Copernicus Sentinel-1
drought
eddy covariance
electrical resistivity tomography
elementary circulation mechanism (ECM)
expansive clay
extensive green roofs
fertilizer
fish
forecasting
forest drought
gross primary productivity
hydrological drought
information entropy
InSAR
lotic systems
Mann-Kendall
meteorological drought
mitigation
n/a
pan evaporation
phytomass
precipitation
precipitation deficit
Pusa station
refuge habitats
risk management
run theory
Sen's estimator
shrink-swell risk
SMOS surface soil moisture
soil moisture
SPI
Standardized Precipitation Evapotranspiration Index (SPEI)
summer drought
SVM-LF
SVM-RF
trends
urban vegetation
vertical climate zones
Wadi Cheliff Basin
WANN
water stress
wavelet analysis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566482303321
Walega Andrzej  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management
Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management
Autore Kisi Ozgur
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (238 p.)
Soggetto topico Research & information: general
Soggetto non controllato additive regression
artificial intelligence
artificial neural network
atmospheric reanalysis
bagging
Bayesian model averaging
big data
calibration
CWP
dagging
Daymet V3
EEFlux
ensemble modeling
extension principle
flood routing
fuzzy sets and systems
Google Earth Engine
Govindpur
groundwater
groundwater level prediction
hydroinformatics
hydrologic model
improved extreme learning machine (IELM)
irrigation performance
Kernel extreme learning machines
M5 model tree
machine learning
multivariate adaptive regression spline
Muskingum method
n/a
NDVI
neural network
nitrogen compound
nitrogen prediction
non-linear modeling
PACF
particle swarm optimization
prediction intervals
prediction models
principal component analysis
random subspace
rotation forest
satellite precipitation
sensitivity analysis
shortwave radiation flux density
South Korea
spatiotemporal variation
streamflow forecasting
streamflow simulation
support vector machine
sustainability
sustainable development
SVM-LF
SVM-RF
uncertainty
uncertainty analysis
ungauged basin
WANN
water conservation
water resources
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557448103321
Kisi Ozgur  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui